We have demonstrated an output coupler for Bose condensed atoms in a magnetic trap. Short pulses of rf radiation were used to create Bose condensates in a superposition of trapped and untrapped hyperfine states. The fraction of out-coupled atoms was adjusted between 0% and 100% by varying the amplitude of the rf radiation. This configuration produces output pulses of coherent atoms and can be regarded as a pulsed "atom laser." [S0031-9007(96)02255-7]
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.Download date: 10 May 2018 VOLUME 77, NUMBER 6
P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 1996Collective Excitations of a (Received 19 June 1996) Collective excitations of a dilute Bose condensate have been observed. These excitations are analogous to phonons in superfluid helium. Bose condensates were created by evaporatively cooling magnetically trapped sodium atoms. Excitations were induced by a modulation of the trapping potential, and detected as shape oscillations in the freely expanding condensates. The frequencies of the lowest modes agreed well with theoretical predictions based on mean-field theory. Before the onset of BoseEinstein condensation, we observed sound waves in a dense ultracold gas. [S0031-9007(96)
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.Download date: 24 Mar 2019 VOLUME 77, NUMBER 3 Bose-Einstein condensation of sodium atoms has been observed in a novel "cloverleaf" trap. This trap combines tight confinement with excellent optical access, using only dc electromagnets. Evaporative cooling in this trap produced condensates of 5 3 10 6 atoms, a tenfold improvement over previous results. We measured the condensate fraction and the repulsive mean-field energy, finding agreement with theoretical predictions. [S0031-9007(96)
P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996
Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.