Thermomechanical perfection of intake and exhaust systems largely determine the efficiency of the working process of reciprocating engines (ICE). The article presents the results of numerical simulation and experimental study of the heat transfer of gas flows in profiled gas- air systems of ICEs. A description of the numerical simulation technique, experimental setup, configurations of the studied hydraulic systems, measuring base and features of the experiments are given. On the basis of numerical modeling, it has been established that the use of profiled sections with cross sections in the shape of a square or a triangle in exhaust systems of an ICEs leads to a decrease in the heat transfer coefficient by 5-11%. It is shown that the use of similar profiled sections in the intake system of reciprocating engines also leads to a decrease in the heat transfer coefficient to 10 % at low air flow rates (up to 40 m/s) and an increase in the heat transfer coefficient to 7% at high speeds. Experimental studies qualitatively confirm the simulation results.
Internal combustion engines are the most common sources of energy among heat engines. Therefore, the improvement of their design and workflow is an urgent task in the development of world energy. Thermal-mechanical perfection of the exhaust system has a significant impact on the technical and economic performance of piston engines. The article presents the results of experimental studies of gasdynamics and heat exchange of pulsating gas flows in the exhaust system of a piston engine. Studies were carried out on a full-scale model of a single-cylinder engine. The article describes the instrument-measuring base and methods of experiments. The heat transfer intensity was estimated in different elements of the exhaust system: the exhaust pipe, the channel in the cylinder head, the valve assembly. Heat transfer studies were carried out taking into account the gas-dynamic nonstationarity characteristic of gas exchange processes in engines. The article presents data on the influence of gas-dynamic and regime factors on the heat transfer intensity. It is shown that the restructuring of the gas flow structure in the exhaust system occurs depending on the engine crankshaft speed, this has a significant impact on the local heat transfer coefficient. It has been established that the heat transfer intensity in the valve assembly is 2-3 times lower than in other elements of the exhaust system.
Thermomechanical perfection of exhaust systems largely determines the efficiency of the engine boost system. The article presents the results of numerical simulation and experimental study of heat transfer of gas flows in profiled exhaust systems of ICE. The description of the numerical simulation technique, the experimental setup, the configurations of the hydraulic systems under investigation, the instrumentation and the experimental features are given in the article. On the basis of numerical simulation, it has been established that the use of profiled sections with a cross-section in the form of a square in the exhaust system of an ICE leads to a decrease in the heat transfer rate to 5 %. The use of profiled sections in the form of a triangle in the system under consideration causes a more significant decrease in heat transfer, which reaches 11 %. Experimental studies qualitatively confirm the results of simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.