Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex real Banach space with dual space E *. In this paper, a new iterative algorithm of Krasnoselskiitype is constructed and used to approximate a common element of a generalized mixed equilibrium problem and a common fixed point of a countable family of generalized-J-nonexpansive maps. Applications of our theorem, in the case of real Hilbert spaces, complement and extend the results of Peng and Yao, (
Let X be a uniformly convex and uniformly smooth real Banach space with dual space X *. In this paper, a Mann-type iterative algorithm that approximates the zero of a generalized-Φ-strongly monotone map is constructed. A strong convergence theorem for a sequence generated by the algorithm is proved. Furthermore, the theorem is applied to approximate the solution of a convex optimization problem, a Hammerstein integral equation, and a variational inequality problem. This theorem generalizes, improves, and complements some recent results. Finally, examples of generalized-Φ-strongly monotone maps are constructed and numerical experiments which illustrate the convergence of the sequence generated by our algorithm are presented.
Let C be a nonempty closed and convex subset of a uniformly smooth and 2-uniformly convex real Banach space E with dual space E *. In this paper, a Krasnoselskii-type subgradient extragradient iterative algorithm is constructed and used to approximate a common element of solutions of variational inequality problems and fixed points of a countable family of relatively nonexpansive maps. The theorems proved are improvement of the results of Censor et al.
An inertial iterative algorithm is proposed for approximating a solution of a maximal monotone inclusion in a uniformly convex and uniformly smooth real Banach space. The sequence generated by the algorithm is proved to converge strongly to a solution of the inclusion. Moreover, the theorem proved is applied to approximate a solution of a convex optimization problem and a solution of a Hammerstein equation. Furthermore, numerical experiments are given to compare, in terms of CPU time and number of iterations, the performance of the sequence generated by our algorithm with the performance of the sequences generated by three recent inertial type algorithms for approximating zeros of maximal monotone operators. In addition, the performance of the sequence generated by our algorithm is compared with the performance of a sequence generated by another recent algorithm for approximating a solution of a Hammerstein equation. Finally, a numerical example is given to illustrate the implementability of our algorithm for approximating a solution of a convex optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.