Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.
Ceruloplasmin (CP), the multicopper oxidase of plasma, interacts with myeloperoxidase (MPO), an enzyme of leukocytes, and inhibits its peroxidase and chlorinating activity. Studies on the enzymatic properties shows that CP behaves as a competitive inhibitor impeding the binding of aromatic substrates to the active centre of MPO. The contact between CP and MPO probably entails conformational changes close to the p-phenylenediamine binding site in CP, which explains the observed activation by MPO of the substrate's oxidation. CP subjected to partial proteolysis was virtually unable to inhibit activity of MPO. The possible protein-protein interface is comprised of the area near active site of MPO and the loop linking domains 5 and 6 in CP. One of the outcomes of this study is the finding of a new link between antioxidant properties of CP and its susceptibility to proteolysis.
We have previously shown that iron-containing human lactoferrin (LF) purified from breast milk is able to form both in vitro and in vivo a complex with ceruloplasmin (CP), the copper-containing protein of human plasma. Here we present evidence that the CP-LF complex is dissociated by high concentrations of NaCl, CaCl2, or EDTA, or by decreasing the pH to 4.7. In addition, DNA, bacterial lipopolysaccharide, and heparin can displace CP from its complex with LF. Antibodies to either of the two proteins also cause dissociation of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.