The main function of the epidermis is to establish a vital multifunctional barrier between the body and its external environment. A defective epidermal barrier is one of the key features of atopic dermatitis (AD), a chronic and relapsing inflammatory skin disorder that affects up to 20% of children and 2-3% of adults and often precedes the development of allergic rhinitis and asthma. This review summarizes recent discoveries on the origin of the skin barrier alterations in AD at the structural protein level, including hereditary and acquired components. The consequences of the epidermal barrier alteration on our current understanding of the pathogenesis of AD, and its possible implications on the treatment of patients, are discussed here.
Most of the skin barrier function is attributable to the outermost layer of the epidermis, the stratum corneum, which is composed of flattened, anucleated cells called corneocytes surrounded by a lipid-enriched lamellar matrix. The composition of the stratum corneum is directly dependent on the underlying granular keratinocytes, which are the last living cells in the stratified epidermis. Many components present in the intercorneocyte matrix are delivered by the underlying granular keratinocytes through a secretion process dependent on lysosome-related organelles called lamellar bodies. Because of the importance of lamellar bodies in the maintenance of the epidermal barrier, the mechanisms regulating their biogenesis must be better understood. In this study, we show that the Rab11a GTPase is highly expressed in terminally differentiated keratinocytes, where it is partly associated with lamellar bodies. Rab11a silencing in three-dimensional in vitro reconstructed human epidermis induces a barrier defect, a decrease in the amount of lipid found in the stratum corneum, a reduction in lamellar body density and secretion areas in granular keratinocytes, and the mis-sorting of lamellar body cargoes being driven to the lysosomal degradation pathway. Our results highlight the importance of Rab11a-dependent regulation of lamellar body biogenesis in keratinocytes and consequently on epidermal barrier homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.