In the recent past, the introduction of miniaturised image sensors with low power consumption, based on complementary metal oxide semiconductor (CMOS) technology, has allowed the realisation of an ingestible wireless capsule for the visualisation of the small intestine mucosa. The device has received approval from Food and Drug Administration and has gained momentum since it has been more successful than traditional techniques in the diagnosis of small intestine disorders. In 2004 an esophagus specific capsule was launched, while a solution for colon is still under development. However, present solutions suffer from several limitations: they move passively by exploiting peristalsis, are not able to stop intentionally for a prolonged diagnosis, they receive power from an internal battery with short length, and their usage is restricted to one organ, either small bowel or esophagus. However the steady progresses in many branches of engineering, including microelectromechanical systems (MEMS), are envisaged to affect the performances of capsular endoscopy. The near future foreshadows capsules able to pass actively through the whole gastrointestinal tract, to retrieve views from all organs and to perform drug delivery and tissue sampling. In the long term, the advent of robotics could lead to autonomous medical platforms, equipped with the most advanced solutions in terms of MEMS for therapy and diagnosis of the digestive tract. In this review, we discuss the state of the art of wireless capsule endoscopy (WCE): after a description on the current status, we present the most promising solutions.
Several console-based robots for laparoscopic multi- and single-port surgery are expected to come to market within the next 5 years. Future developments in the field of robotic surgery are likely to focus on the specific features of robotic arms, instruments, console, and video technology. The high technical standards of four da Vinci generations have set a high bar for upcoming devices. Ultimately, the implementation of these upcoming systems will depend on their clinical applicability and costs. How these technical developments will facilitate surgery and whether their use will translate into better outcomes for our patients remains to be determined.
Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.
This study reports the first successful in vivo surgical experiment using a wireless endoscopic capsule, paving the way to a new generation of capsule devices able to perform both diagnostic and therapeutic tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.