The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.ion channel | CaCCinh-A01 | TMEM16A | HNSCC | ESCC
Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brainspecific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem celllike population (hmNSC, for human marrow-derived NSClike cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases.
Background: The calcium-activated chloride channel ANO1 is highly expressed in cancer.Results: Inhibition of ANO1 activity alone is not sufficient to inhibit cancer cell proliferation, suggesting a novel function of ANO1 protein in cancer.Conclusion: The ANO1 inhibitor CaCCinh-A01 inhibits cancer cell proliferation by facilitating degradation of ANO1.Significance: Our results may provide a new targeting approach for antitumor therapy in ANO1-amplified cancers.
Chronic obstructive pulmonary disease (COPD) is associated with pulmonary inflammation with increased numbers of macrophages located in the parenchyma. These macrophages have the capacity to mediate the underlying pathophysiology of COPD; therefore, a better understanding of their function in chronic inflammation associated with this disease is vital. Ion channels regulate many cellular functions; however, their role in macrophages is unclear. This study examined the expression and function of transient receptor potential (TRP) channels in human macrophages. Human alveolar macrophages and lung tissue macrophages expressed increased mRNA and protein for TRPC6 when compared with monocytes and monocyte-derived macrophages. Moreover, TRPC6 mRNA expression was significantly elevated in alveolar macrophages from patients with COPD compared with control subjects. There were no differences in mRNA for TRPC3 or TRPC7. Although mRNA for TRPM2 and TRPV1 was detected in these cells, protein expression could not be determined. Fractionation of lung-derived macrophages demonstrated that TRPC6 protein was more highly expressed by smaller macrophages compared with larger macrophages. Using whole-cell patch clamp electrophysiology, TRPC6-like currents were measured in both macrophage subpopulations with appropriate biophysical and basic pharmacological profiles. These currents were active under basal conditions in the small macrophages. These data suggest that TRPC6-like channels are functional on human lung macrophages, and may be associated with COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.