In humans, studies of female germ cells are very limited by ethics. The current study investigated the usefulness of benign ovarian teratomas as a substitute for ova in analyses of imprinted genes. Twenty-five human benign ovarian teratomas were typed with 45 microsatellite DNA markers and classified according to their genotypic features. Two oppositely imprinted genes, H19 and SNRPN, were then chosen for analysis of their methylation states in these tumors. These analyses revealed that benign ovarian teratomas consist of a mixture of genetically and epigenetically heterogeneous cell populations. In contrast to previous reports, we could document only one case rising from germ cells by meiosis-II nondisjunction. H19 and SNRPN were methylated in individual teratomas to various degrees, ranging from normal somatic cell to expected ovum levels. The allele with residual methylation of H19 was consistent with that methylated in the patient's blood DNA, thus being of paternal origin. Degrees of H19 hypomethylation and SNRPN hypermethylation increased as the cellular origin of the tumors advanced in oogenesis and were closely correlated in individual teratomas. These results could be best explained by the assumption that the primary imprinting is a progressively organized process and suggest that the establishment of primary imprints on different genes might be mechanistically linked, even when those genes are oppositely imprinted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.