To investigate the bone formation ability of porous hydroxyapatite (HA) and tricalcium phosphate (TCP), ceramic discs were implanted with or without rat marrow cells into subcutaneous sites in syngeneic rats. The discs of HA and TCP had identical microstructures: pore size was 190-230 microns, porosity was 50-60%, and they were fully interconnected. Implants without marrow cells (discs themselves) did not show bone formation, whereas implants with marrow cells showed bone formation in the pores of the ceramics. The bone formation of both HA and TCP occurred initially on the surface of the ceramic and progressed towards the center of the pore. The de novo bone was quantitated from decalcified serial sections of the implants. One month after implantation with marrow cells, the percentage fractions of the pore area filled with bone for implanted HA and TCP were 16.9 and 15.1, respectively. At 2 months after implantation with marrow cells, the fractions of bone were 34.3 and 30.9, respectively. These results indicate that both HA and TCP ceramics can show comparable osteogenic ability in the presence of marrow cells.
This study determined the bone formation in porous calcium carbonate (CC) and porous hydroxyapatite (HA) in ectopic sites. The bone formation stimulus was derived from bone marrow cells. CC and HA in the shape of disks were implanted with or without rat marrow cells into subcutaneous sites of syngeneic rats. The CC and HA had identical microstructure: pore size was 190-230 microns, porosity was 50-60% and they were fully interconnected. Bone did not form in any implants without marrow cells (disks themselves), whereas bone consistently formed in the pores of all implants with marrow cells after 4 weeks. The bone formation of both CC and HA occurred initially on surface of the pore regions and progressed toward the center of the pore. Scanning electron microscopy and electron-probe microanalysis revealed a continuum of calcium at the interfaces of both bone/CC and bone/HA implants. These results indicate that the bone formation in calcium carbonate derived from marine corals is comparable to the bioactive hydroxyapatite.
The effect of aging on osteoblastic differentiation of marrow stromal stem cells was examined. Porous hydroxyapatite (HA) disks were soaked in cells suspensions of bone marrow cells from young (8 weeks) and old rats (60 weeks) and then implanted subcutaneously in syngeneic young and old rats. The bone marrow/HA composites were harvested 8 weeks later, and the contents of bone Gla protein (BGP) and alkaline phosphatase (ALP) activity in them were determined. Histologically, bone formation could be detected in all the composites in young recipient rats; however, some old bone marrow/HA composites in old recipients did not show bone formation and the bone volume in the young bone marrow/HA composites was greater than in the old bone marrow/HA composites. The ratios of ALP activities of young bone marrow/HA composites to old bone marrow/HA composites in young and old recipients were about five times and four times, respectively. The ratios of BGP contents of young bone marrow/HA to old bone marrow/HA composite in young and old recipients were about nine and eight times, respectively. The results suggest that the decreased bone formation observed in old bone marrow cells was due to a smaller population of stromal cells and/or decreased capacity of differentiation of stromal stem cells into osteogenic cells. (J Bone Miner Res 1997;12:989-994)
These results indicate that activation of enteric neural 5-HT(4)-receptors promotes reconstruction of an enteric neural circuit leading to the recovery of the defecation reflex in the distal gut, and that this reconstruction involves possibly neural stem cells. These findings indicate that treatment with 5-HT(4) agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic gut disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.