BackgroundThe response to endotoxin (LPS), and subsequent signal transduction lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by innate immune cells. Cells or organisms pretreated with endotoxin enter into a transient state of hyporesponsiveness, referred to as endotoxin tolerance (ET) which represents a particular case of negative preconditioning. Despite recent progress in understanding the molecular basis of ET, there is no consensus yet on the primary mechanism responsible for ET and for the more complex cases of cross tolerance. In this study, we examined the consequences of the macromolecular crowding (MMC) and of fractal-like kinetics (FLK) of intracellular enzymatic reactions on the LPS signaling machinery. We hypothesized that this particular type of enzyme kinetics may explain the development of ET phenomenon.MethodOur aim in the present study was to characterize the chemical kinetics framework in ET and determine whether fractal-like kinetics explains, at least in part, ET. We developed an ordinary differential equations (ODE) mathematical model that took into account the links between the MMC and the LPS signaling machinery leading to ET. We proposed that the intracellular fractal environment (MMC) contributes to ET and developed two mathematical models of enzyme kinetics: one based on Kopelman’s fractal-like kinetics framework and the other based on Savageau’s power law model.ResultsKopelman’s model provides a good image of the potential influence of a fractal intracellular environment (MMC) on ET. The Savageau power law model also partially explains ET. The computer simulations supported the hypothesis that MMC and FLK may play a role in ET.ConclusionThe model highlights the links between the organization of the intracellular environment, MMC and the LPS signaling machinery leading to ET. Our FLK-based model does not minimize the role of the numerous negative regulatory factors. It simply draws attention to the fact that macromolecular crowding can contribute significantly to the induction of ET by imposing geometric constrains and a particular chemical kinetic for the intracellular reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.