Lung cancer causes more deaths in men and women than any other cancer related disease. Currently, few effective strategies exist to predict how patients will respond to treatment. We evaluated the serum metabolomic profiles of 25 lung cancer patients undergoing chemotherapy ± radiation to evaluate the feasibility of metabolites as temporal biomarkers of clinical outcomes. Serial serum specimens collected prospectively from lung cancer patients were analyzed using both nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography mass spectrometry (GC–MS). Multivariate statistical analysis consisted of unsupervised principal component analysis or orthogonal partial least squares discriminant analysis with significance assessed using a cross-validated ANOVA. The metabolite profiles were reflective of the temporal distinction between patient samples before during and after receiving therapy (1H-NMR, p < 0.001: and GC–MS p < 0.01). Disease progression and survival were strongly correlative with the GC–MS metabolite data whereas stage and cancer type were associated with 1H-NMR data. Metabolites such as hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival (GC–MS p < 0.05) and metabolites such as tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression (GC–MS p < 0.05). Metabolite profiles have the potential to act as prognostic markers of clinical outcomes for lung cancer patients. Serial 1H-NMR measurements appear to detect metabolites diagnostic of tumor pathology, while GC–MS provided data better related to prognostic clinical outcomes, possibility due to physiochemical bias related to specific biochemical pathways. These results warrant further study in a larger cohort and with various treatment options.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-016-0961-5) contains supplementary material, which is available to authorized users.
Background High-throughput technologies have the potential to identify non-invasive biomarkers of liver pathology and improve our understanding of basic mechanisms of liver injury and repair. A metabolite profiling approach was employed to determine associations between alterations in serum metabolites and liver histology in patients with chronic hepatitis C virus (HCV) infection. Methods Sera from 45 non-diabetic patients with chronic HCV were quantitatively analyzed using 1 H-NMR spectroscopy. A metabolite profile of advanced fibrosis (METAVIR F3-4) was established using orthogonal partial least squares discriminant analysis modeling and validated using seven-fold cross-validation and permutation testing. Bioprofiles of moderate to severe steatosis (≥33 %) and necroinflammation (METAVIR A2-3) were also derived. The classification accuracy of these profiles was determined using areas under the receiver operator curves (AUROCSs) measuring against liver biopsy as the gold standard. Results In total 63 spectral features were profiled, of which a highly significant subset of 21 metabolites were associated with advanced fibrosis (variable importance score >1 in multivariate modeling; R 2 = 0.673 and Q 2 = 0.285). For the identification of F3–4 fibrosis, the metabolite bioprofile had an AUROC of 0.86 (95 % CI 0.74–0.97). The AUROCs for the bioprofiles for moderate to severe steatosis were 0.87 (95 % CI 0.76–0.97) and for grade A2–3 inflammation were 0.73 (0.57–0.89). Conclusion This proof-of-principle study demonstrates the utility of a metabolomics profiling approach to non-invasively identify biomarkers of liver fibrosis, steatosis and inflammation in patients with chronic HCV. Future cohorts are necessary to validate these findings. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0109-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.