A bench-scale continuous-flow wastewater treatment system comprising three parallel lines using duckweed (Spirodela polyrhiza), water lettuce (Pistia stratiotes), and algae (natural colonization) as treatment agents was set up to determine environmental conditions, fecal coliform profiles and general treatment performance. Each line consisted of four ponds connected in series fed by diluted sewage. Influent and effluent parameters measured included environmental conditions, turbidity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, nitrite, ammonia, total phosphorus, fecal coliforms, mosquito larvae, and sludge accumulations. Environmental conditions and fecal coliforms profiles were determined in the sediments (0.63 m), suspensions (0.35 m), and surfaces (0.1 m) of each pond. Acidic conditions were observed in the pistia ponds, neutral conditions in duckweed ponds, and alkaline conditions in algal ponds. Fecal coliforms log removals of 6, 4, and 3 were observed in algal, duckweed, and pistia ponds, respectively, in the final effluents, with die-off rates per pond of 2.7, 2.0, and 1.6. Sedimentation accounted for over 99% fecal coliform removal in most of the algal and pistia ponds. BOD removal was highest in the duckweed system, followed by pistia and algae at 95%, 93%, and 25%, respectively. COD removals were 65% and 59%, respectively, for duckweed and pistia, while COD increased in algal ponds by 56%. Nitrate removals were 72%, 70%, and 36%, respectively for duckweed, pistia, and algal ponds. Total phosphorus removals were 33% and 9% for pistia and duckweed systems, while an increase of 19% was observed in the algal treatment system. Ammonia removals were 95% in both pistia and duckweed and 93% in algal systems. Removals of total dissolved solids (TDS) were 70% for pistia, 15% for duckweed, and 9% for algae. Mosquito populations of 11,175/m(2), 3516/m(2), and 96/m(2) were counted in pistia, algal, and duckweed ponds, respectively. Low turbidity and low sludge accumulation characterized the macrophyte ponds. Performance in the removal of fecal coliforms in the algal-based treatment system and organic load removal in both macrophytes and algal-based treatment systems met the Ghana Environmental Protection Agency guideline values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.