Abstract. The angular motion of a few-body system is described with global vectors which depend on the positions of the particles. The previous study using a single global vector is extended to make it possible to describe both natural and unnatural parity states. Numerical examples include three-and four-nucleon systems interacting via nucleon-nucleon potentials of AV8 type and a 3α system with a nonlocal αα potential. The results using the explicitly correlated Gaussian basis with the global vectors are shown to be in good agreement with those of other methods. A unique role of the unnatural parity component, caused by the tensor force, is clarified in the 0 − 1 state of 4 He. Twoparticle correlation function is calculated in the coordinate and momentum spaces to show different characteristics of the interactions employed.
The ground and excited 0 + states of 12 C are investigated in a 3α macroscopic model using the deep potential of Buck, Friedrich and Wheatley. The elimination of forbidden states is performed either by constructing the allowed state space explicitly or by using the orthogonalizing pseudopotential. The well-known enigmatic behavior of the latter approach is resolved. It is safe to define the forbidden states referring to the underlying microscopic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.