The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.
Among the several causes, critical low soil organic matter status is predominant for decline in soil health and consequent fall in crop productivity. Over the years, availability of traditional source of soil organic amendment, viz. cattle manure drastically declined due to various reasons (domestic uses as fuel and plastering of the kachha houses). The present study highlights that there are many alternative sources of soil organic amendments available in the country which have tremendous potential to improve soil organic matter status and crop productivity, and rejuvenate and enhance the dying total factor productivity of Indian soils. Data from various sources reveal that about 300 million tonnes of alternative sources of soil organic amendments are available in the country. This study highlights that the application of alternative sources of organic amendments directly or indirectly improves soil health by influencing many soil properties (physical and chemical) and enzyme activities (biological) that regulate nutrient dynamics in the soil. Consequent upon improvement in soil environment, the application of alternative sources of soil organic amendments alone or along with recommended dose of fertilizers registered significantly higher yield in different crops across different agro-climatic conditions of the country. Composting and vermicomposting are the best strategies to convert the biomass of available alternative sources of organic amendments to plant nutrient-rich products.
In the present study, the potential locations for constructing different water‐harvesting structures in a semi‐arid watershed located at Goparajpalli, in southern India, were derived using GIS in three stages. The locations were first identified based on land use land cover, land slope, rainfall characteristics, soil texture and soil depth. Then a number of structures and suitable semi‐arid rainfed regions have limitations in their runoff potential availability; these locations were further optimized based on the runoff available after in situ water conservation and storage in existing water‐harvesting structures. The surplus runoff volume available in a normal year after storage was estimated to be 870 000 m3. Suitable locations for 25 rock fill dams (RFD), 74 farm ponds and 5 check dams were identified. These derived sites were validated by exporting to Google Earth and investigated for their suitability with ground truth information. At present, the number of structures existing is more than the optimum number of structures derived, but they have less storage capacity. Hence those structures such as farm ponds located at potential sites are recommended for desiltation and renovation by increasing their size along with lining so that they can be utilized for rainwater harvesting and supplementary irrigation. This methodology for identification of potential locations for water‐harvesting structures is less time‐consuming, more precise and can be utilized for the planning of large catchments to improve the water availability and productivity. Copyright © 2017 John Wiley & Sons, Ltd.
In a semi-arid microwatershed of Warangal district in Southern India, daily runoff was estimated spatially using Soil Conservation Service (SCS)-curve number (CN) method coupled with GIS. The groundwater status in this region is over-exploited, and precise estimation of runoff is very essential to plan interventions for this ungauged microwatershed. Rainfall is the most important factor governing runoff, and 75.8% of the daily rainfall and 92.1% of the rainy days which occurred were below 25 mm/day. The declines in rainfall and rainy days observed in recent years were 9.8 and 8.4%, respectively. The surface runoff estimated from crop land for a period of 57 years varied from 0 to 365 mm with a mean annual runoff of 103.7 mm or 14.1% of the mean annual rainfall. The mean annual runoff showed a significant reduction from 108.7 to 82.9 mm in recent years. The decadal variation of annual runoff from crop land over the years varied from 49.2 to 89.0% which showed the caution needed while planning watershed management works in this microwatershed. Among the four land use land cover conditions prevailing in the area, the higher runoff (20% of the mean annual rainfall) was observed from current fallow in clayey soil and lower runoff of 8.7% from crop land in loamy soil due to the increased canopy coverage. The drought years which occurred during recent years (1991-2007) in crop land have increased by 3.5%, normal years have increased by 15.6%, and the above normal years have decreased by 19.1%. This methodology can be adopted for estimating the runoff potential from similar ungauged watersheds with deficient data. It is concluded that in order to ensure long-term and sustainable groundwater utilization in the region, proper estimation of runoff and implementation of suitable water harvesting measures are the need of the hour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.