A series of new cationic surfactants, bis-quaternary ammonium salts, were prepared from tert-alkylamine and a product of the reaction of epichlorohydrin with decyl-and dodecylamine, and their surface-active properties were measured. Specifically, the critical micelle concentration (CMC), effectiveness of surface tension reduction (γ CMC ), surface excess concentration (Γ), area per molecule at the interface (A), and standard free energies of adsorption (∆G ads°) and of micellization (∆G mic°) were determined. All these surfactants showed good water solubility and low CMC, more than one order of magnitude lower than those of corresponding monoalkylammonium salts. They also showed good foaming properties but worse wetting capabilities. Many of these compounds had antimicrobial activities against gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans), but they were not active against molds.
Formation of thiobarbituric acid-reactive substances (TBRS; nmol/mg lipids) indicative of lipid peroxidation was measured in whole cells and in isolated plasma membrane lipids from three yeast species differing in oxidant sensitivity (Schizosaccharomyces pombe, Saccharomyces cerevisiae and Rhodotorula glutinis) after exposure to the Fenton reagent, FeII, H2O2, tert-butyl hydroperoxide (TBHP) and azo compounds (AAPH, ACHN). In whole cells, spontaneous TBRS formation rose in the sequence S. pombe < S. cerevisiae < R. glutinis (1:approximately 5:approximately 7). Oxidants increased the TBRS production 13-18 fold in the sequence FeII approximately TBHP > AAPH approximately ACHN approximately Fe-Fenton > H2O2. This increase need not be solely due to increased lipid peroxidation. In isolated plasma membrane lipids from all three species, the spontaneous TBRS production referred to 1 mg lipids was 9-13-fold higher than in whole cells. In S. pombe lipids, only TBHP increased the TBRS production. In lipids from S. cerevisiae and R. glutinis, all added oxidants increased the spontaneous TBRS production 2-3 times in the sequence TBHP > ACHN > AAPH > FeII > Fe-Fenton > H2O2. Oxidant-induced TBRS production in both whole cells and isolated membrane lipids was partially suppressed by the lipid peroxidation inhibitors 2,6-di-tert-butyl-4-methylphenol ("butylated hydroxytoluene"; BHT) and the newly synthesized PYA12 compound. Both agents were more effective in isolated lipids than in whole cells and against OH.-producing than against ROO.- or RO.-producing oxidants. Yeast membrane lipids, which are generally poor in polyunsaturated fatty acids, are thus subject to perceptible lipid peroxidation.
A new series of amphiphilic compounds with incorporated antioxidant functional group has been investigated. Piperidinium bromides, differing in the alkyl chain length (8, 10, 12, 14 and 16 carbon atoms in the chain) were synthesised to protect biological and/or model membranes against peroxidation and following negative consequences. Their antioxidant activity was studied with erythrocytes subjected to UV radiation. The salts used inhibited lipid oxidation in the erythrocyte membrane. The degree of this inhibition depended on the alkyl chain length of the bromide used and increased with increasing alkyl chain length. A comparison of the results obtained for piperidinium bromides with those obtained for the widely used antioxidant 3,5-di-t-butyl-4-hydroxytoluene (BHT) revealed that only two shortest alkyl chain salts were less efficient than BHT in protecting erythrocyte membranes. A similar comparison with antioxidant efficiency of flavonoids extracted from Rosa rugosa showed that they protected the membranes studied more weakly than the least effective eight-carbon alkyl chain piperidinium bromide. The three compounds of longest alkyl chains were the most active antioxidants. Their activities did not differ significantly.
Three new groups of phenolic antioxidants, quaternary ammonium salts with a phenol ring and alkyl chains of different length (pyrrolidine ethyl esters of 3,5-di-t-butyl-4-hydroxydihydrocinnamic acid n-alkoxymethylchlorides (PYE-n) or n-alkylbromides (PYA-n) and 2-dimethylaminoethyl ester n-alkylbromides (PPA-n), were synthesized. Some of them were previously found to efficiently protect yeast cells against oxidants and to inhibit the production of thiobarbituric acid-reactive substances in whole yeast cells and in isolated membrane lipids. The new antioxidants (at 1-100 μm) abolished or diminished peroxidation of oliwe oil emulsions caused by the OH•-producing Fe2+ and RO• and ROO•-producing tertbutylhydroperoxide (TBHP) and the azo compounds 2,2′-azobis-(amidinopropane)dihydronitrile (AAPH) and 1,1′-azobis-(1-cyclohexanecarbonitrile) (ACHN): all present at 10 mᴍ . The efficiency of individual both antioxidants was examined in relation to the type of lipid peroxidation inducer, the site of antioxidant incorporation into the emulsion lipid phase, the length of the alkyl chain, and the maximum concentration of effective antioxidant monomers given by its critical micelle concentration. PYA-n class compounds were highly efficient against all peroxidation inducers and their efficiency did not depend on the position of their molecules in the lipid phase and/or on the aliphatic chain length. In contrast, the efficiency of PYE-n and PPA-n class compounds depended both on the type of oxidant and on the length of their aliphatic chain. Their potency against Fe2+ and ACHN increased with increasing alkyl chain length whereas with AAPH it dropped with increasing alkyl chain length. A similar pattern was found with the action of PYE-n against TBHP whereas in the PPA-n group an extending alkyl chain reduced the anti-TBHP efficiency. These relationships may not be entirely straightforward and other factors (chemical nature of each compound, its possible interaction with fluorescent probes used for diagnostics, etc.) may play a considerable and not yet quite clear role. PPA-n class antioxidants have the lowest critical micelle concentration, which may limit their efficiency. Nevertheless, these phenolic antioxidants can be conveniently employed as highly efficient inhibitors of lipid peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.