We report on the observation of photogalvanic effects in tBLG with a twist angle of 0.6°. We show that excitation of the tBLG bulk causes a photocurrent, whose sign and magnitude are controlled by the orientation of the radiation electric field and the photon helicity. The observed photocurrent provides evidence for the reduction of the point group symmetry in low twist-angle tBLG to the lowest possible one. The developed theory shows that the current is formed by asymmetric scattering in gyrotropic tBLG. We also detected the photogalvanic current formed in the vicinity of the edges. For both bulk and edge photocurrents, we demonstrate the emergence of pronounced oscillations upon variation of the gate voltage. The gate voltages associated with the oscillations correlate with peaks in resistance measurements. These are well explained by interband transitions between a multitude of isolated bands in tBLG.
We report on the observation of the giant photoconductance of a quantum point contact (QPC) in tunneling regime excited by terahertz radiation. Studied QPCs are formed in a GaAs/AlGaAs heterostructure with a high-electron-mobility two-dimensional electron gas. We demonstrate that irradiation of strongly negatively biased QPCs by laser radiation with frequency f = 0.69 THz and intensity 50 mW/cm 2 results in two orders of magnitude enhancement of the QPC conductance. The effect has a superlinear intensity dependence and increases with the dark conductivity decrease. It is also characterized by strong polarization and frequency dependencies. We demonstrate that all experimental findings can be well explained by the photon-mediated tunneling through the QPC. Corresponding calculations are in a good agreement with the experiment.
We report on the observation of symmetry breaking and the circular photogalvanic effect in Cdx Hg1-x Te alloys. We demonstrate that irradiation of bulk epitaxial films with circularly polarized terahertz radiation leads to the circular photogalvanic effect (CPGE) yielding a photocurrent whose direction reverses upon switching the photon helicity. This effect is forbidden in bulk zinc-blende crystals by symmetry arguments, therefore, its observation indicates either the symmetry reduction of bulk material or that the photocurrent is excited in the topological surface states formed in a material with low Cadmium concentration. We show that the bulk states play a crucial role because the CPGE was also clearly detected in samples with non-inverted band structure. We suggest that strain is a reason of the symmetry reduction. We develop a theory of the CPGE showing that the photocurrent results from the quantum interference of different pathways contributing to the free-carrier absorption (Drude-like) of monochromatic radiation. arXiv:1911.01936v1 [cond-mat.mes-hall]
We report on the study of magneto-photogalvanic and magnetotransport phenomena in 200 nm partially strained HgTe films. This thickness is slightly larger than the estimated critical thickness of lattice relaxation leaving the film partially relaxed with the value of the energy gap close to zero. We show that illumination of HgTe films with monochromatic terahertz laser radiation results in a giant resonant photocurrent caused by the cyclotron resonance in the surface states. The resonant photocurrent is also detected in the reference fully strained 80 nm HgTe films previously shown to be fully gapped 3D topological insulators. We show that the resonance positions in both types of films almost coincide demonstrating the existence of topologically protected surface states in thick HgTe films. The conclusion is supported by magnetotransport experiments. arXiv:1902.02972v2 [cond-mat.mes-hall]
We report on a strong nonlinear behavior of the photogalvanics and photoconductivity under excitation of HgTe quantum wells (QWs) by intense terahertz (THz) radiation. The increasing radiation intensity causes an inversion of the sign of the photocurrent and transition to its superlinear dependence on the intensity. The photoconductivity also shows a superlinear raise with the intensity. We show that the observed photoresponse nonlinearities are caused by the band-to-band light impact ionization under conditions of a photon energy less than the forbidden gap. The signature of this kind of impact ionization is that the angular radiation frequency ω = 2πf is much higher than the reciprocal momentum relaxation time. Thus, the impact ionization takes place solely because of collisions in the presence of a high-frequency electric field. The effect has been measured on narrow HgTe/CdTe QWs of 5.7 nm width; the nonlinearity is detected for linearly and circularly polarized THz radiation with different frequencies ranging from f = 0.6 to 1.07 THz and intensities up to hundreds of kW/cm 2 . We demonstrate that the probability of the impact ionization is proportional to the exponential function, exp(−E 2 0 /E 2 ), of the radiation electric field amplitude E and the characteristic field parameter E0. The effect is observable in a wide temperature range from 4.2 to 90 K, with the characteristic field increasing with rising temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.