The human Dubin-Johnson syndrome and its animal model, the TR(-) rat, are characterized by a chronic conjugated hyperbilirubinemia. TR(-) rats are defective in the canalicular multispecific organic anion transporter (cMOAT), which mediates hepatobiliary excretion of numerous organic anions. The complementary DNA for rat cmoat, a homolog of the human multidrug resistance gene (hMRP1), was isolated and shown to be expressed in the canalicular membrane of hepatocytes. In the TR(-) rat, a single-nucleotide deletion in this gene resulted in a reduced messenger RNA level and absence of the protein. It is likely that this mutation accounts for the TR(-) phenotype.
Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal membrane binding motif of the protein and resembles a putative fusion peptide. The peptide was found to mimic the behavior of its parent protein bindin with respect to (a) its high affinity for lipid bilayers, (b) the ability to aggregate and fuse vesicles, (c) the binding of Zn 2؉ by a histidine-rich motif, (d) the tendency to self-assemble, and (e), as indicated earlier, the adhesion to cell surface polysaccharides. Fluorescence and light scattering assays were used here to monitor peptide-induced lipid mixing, leakage, and aggregation of large unilamellar sphingomyelin/ cholesterol vesicles. For these activities, B18 requires the presence of Zn 2؉ ions, with which it forms oligomeric complexes and assumes a partially ␣-helical conformation, as observed by circular dichroism. We conclude that aggregation and fusion involves a "transcomplex" between peptides on apposing vesicles that are connected by Zn 2؉ bridges.
The interaction of 125I-labelled tissue-type plasminogen activator (125I-t-PA) with freshly isolated rat parenchymal and endothelial liver cells was studied. Binding experiments at 4 degrees C with parenchymal cells and endothelial liver cells indicated the presence of 68,000 and 44,000 high-affinity t-PA-binding sites, with an apparent Kd of 3.5 and 4 nM respectively. Association of 125I-t-PA with parenchymal cells was Ca(2+)-dependent and was not influenced by asialofetuin, a known ligand for the galactose receptor. Association of 125I-t-PA with liver endothelial cells was Ca(2+)-dependent and mannose-specific, since ovalbumin (a mannose-terminated glycoprotein) inhibited the cell association of t-PA. Association of 125I-t-PA with liver endothelial cells was inhibited by anti-(human mannose receptor) antiserum. Anti-(galactose receptor) IgG had no effect on 125I-t-PA association with either cell type. Degradation of 125I-t-PA at 37 degrees C by both cell types was inhibited by chloroquine or NH4Cl, indicating that t-PA is degraded lysosomally. in vitro experiments with three monoclonal antibodies (MAbs) demonstrated that anti-t-PA MAb 1-3-1 specifically decreased association of 125I-t-PA with the endothelial cells, and anti-t-PA Mab 7-8-4 inhibited association with the parenchymal cells. Results of competition experiments in rats in vivo with these antibodies were in agreement with findings in vitro. Both antibodies decreased the liver uptake of 125I-t-PA, while a combination of the two antibodies was even more effective in reducing the liver association of 125I-t-PA and increasing its plasma half-life. We conclude from these data that clearance of t-PA by the liver is regulated by at least two pathways, one on parenchymal cells (not galactose/mannose-mediated) and another on liver endothelial cells (mediated by a mannose receptor). Results with the MAbs imply that two distinct sites on the t-PA molecule are involved in binding to parenchymal cells and liver endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.