Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.O n the molecular level, carbon nanotubes (CNTs) have an outstanding combination of mechanical strength and stiffness, electrical and thermal conductivity, and low density, making them ideal multifunctional materials that combine the best properties of polymers, carbon fibers, and metals (1). However, such outstanding properties have remained elusive on a macroscopic scale. Handling CNTs with sufficient length, stiffness, and chemical inertness introduces major challenges in material processing. Here we report lightweight fibers that approach the high specific strength of polymeric and carbon fibers, while also achieving the high specific electrical conductivity of metals and the specific thermal conductivity of graphite fibers.Two distinct routes have been developed for manufacturing neat CNT fibers (2). One route employs a solid-state process wherein CNTs are either directly spun into a fiber from the synthesis reaction zone (3, 4) or from a CNT forest grown on a solid substrate (5). This approach does not lend itself to the typical easy scale-up of chemical processes, as it combines multiple steps into a single one, limiting the options for process and material optimization. Indeed, solidstate fibers have low packing and poor orientation, and include impurities within their structure (6). Despite these shortcomings, solid-state CNT fibers have delivered the best properties so far (3, 4, 7-9). The reason for this relative success is the length of the CNTs that constitute these fibers-1 mm or more (2). Longer CNTs reduce the number of CNT ends in a fiber, yielding greater strength (10) and reducing CNT junctions, which increases electrical and thermal conductivity (11). The alternate fiber production route-wet spinning-was the first method for producing CNT fibers (12). In this process, premade CNTs are dissolved or dispersed in a fluid, extruded out of a spinneret, and coagulated into a solid fiber by extracting the dispersant. Wet spinning is easily scaled to industrial levels and is indeed the route by which highperformance fibers are manufactured (including ballistic fibers such as Kevlar and Twaron and structural fibers such as Toho Tenax and Thornel carbon fibers) (13). Decoupling the synthesis of CNTs from the spinning of the fibers allo...