Structural degradation in manganese oxides leads to unstable electrocatalytic activity during long-term cycles. Herein, we overcome this obstacle by using proton exchange on well-defined layered Li2MnO3 with an O3-type structure to construct protonated Li2-xHxMnO3-n with a P3-type structure. The protonated catalyst exhibits high oxygen reduction reaction activity and excellent stability compared to previously reported cost-effective Mn-based oxides. Configuration interaction and density functional theory calculations indicate that Li2-xHxMnO3-n has fewer unstable O 2p holes with a Mn3.7+ valence state and a reduced interlayer distance, originating from the replacement of Li by H. The former is responsible for the structural stability, while the latter is responsible for the high transport property favorable for boosting activity. The optimization of both charge states to reduce unstable O 2p holes and crystalline structure to reduce the reaction pathway is an effective strategy for the rational design of electrocatalysts, with a likely extension to a broad variety of layered alkali-containing metal oxides.
Three bacterial strains, 1AS11T, 1AS12 and 1AS13, members of the new symbiovar salignae and isolated from root nodules of Acacia saligna grown in Tunisia, were characterized using a polyphasic approach. All three strains were assigned to the
Rhizobium leguminosarum
complex on the basis of rrs gene analysis. Phylogenetic analysis based on 1734 nucleotides of four concatenated housekeeping genes (recA, atpD, glnII and gyrB) showed that the three strains were distinct from known rhizobia species of the
R. leguminosarum
complex and clustered as a separate clade within this complex. Phylogenomic analysis of 92 up-to-date bacterial core genes confirmed the unique clade. The digital DNA–DNA hybridization and blast-based average nucleotide identity values for the three strains and phylogenetically related
Rhizobium
species ranged from 35.9 to 60.0% and 87.16 to 94.58 %, which were lower than the 70 and 96% species delineation thresholds, respectively. The G+C contents of the strains were 60.82–60.92 mol% and the major fatty acids (>4 %) were summed feature 8 (57.81 %; C18 : 1 ω7c) and C18 : 1 ω7c 11-methyl (13.24%). Strains 1AS11T, 1AS12 and 1AS13 could also be differentiated from their closest described species (Rhizobium indicum,
Rhizobium laguerreae
and
Rhizobium changzhiense
) by phenotypic and physiological properties as well as fatty acid content. Based on the phylogenetic, genomic, physiological, genotypic and chemotaxonomic data presented in this study, strains 1AS11T, 1AS12 and 1AS13 represent a new species within the genus
Rhizobium
and we propose the name Rhizobium acaciae sp. nov. The type strain is 1AS11T (=DSM 113913T=ACCC 62388T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.