We present the discovery of eclipses in the X-ray light curves of the X-ray binary Swift J1858.6–0814. From these, we find an orbital period of $P=76841.3_{-1.4}^{+1.3}$ s (≈21.3 hours) and an eclipse duration of $t_{\rm ec}=4098_{-18}^{+17}$ s (≈1.14 hours). We also find several absorption dips during the pre-eclipse phase. From the eclipse duration to orbital period ratio, the inclination of the binary orbit is constrained to i > 70○. The most likely range for the companion mass suggests that the inclination is likely to be closer to this value than 90○. The eclipses are also consistent with earlier data, in which strong variability (‘flares’) and the long orbital period prevent clear detection of the period or eclipses. We also find that the bright flares occurred preferentially in the post-eclipse phase of the orbit, likely due to increased thickness at the disc-accretion stream interface preventing flares being visible during the pre-eclipse phase. This supports the notion that variable obscuration is responsible for the unusually strong variability in Swift J1858.6–0814.
Swift J1858.6–0814 is a recently discovered X-ray binary notable for extremely strong variability (by factors >100 in soft X-rays) in its discovery state. We present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6–0814, implying that the compact object in the system is a neutron star. Some of the bursts show photospheric radius expansion, so their peak flux can be used to estimate the distance to the system. The peak luminosity, and hence distance, can depend on several system parameters; for the most likely values, a high inclination and a helium atmosphere, $D=12.8_{-0.6}^{+0.8}$ kpc, although systematic effects allow a conservative range of 9-18 kpc. Before one burst, we detect a QPO at 9.6 ± 0.5 mHz with a fractional rms amplitude of 2.2 ± 0.2% (0.5 − 10 keV), likely due to marginally stable burning of helium; similar oscillations may be present before the other bursts but the light curves are not long enough to allow their detection. We also search for burst oscillations but do not detect any, with an upper limit in the best case of 15% fractional amplitude (over 1 − 8 keV). Finally, we discuss the implications of the neutron star accretor and this distance on other inferences which have been made about the system. In particular, we find that Swift J1858.6–0814 was observed at super-Eddington luminosities at least during bright flares during the variable stage of its outburst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.