MAXI J1820+070 (optical counterpart ASASSN-18ey) is a black hole candidate discovered through its recent very bright outburst. The low extinction column and long duration at high flux allow detailed measurements of the accretion process to be made. In this work, we compare the evolution of X-ray spectral and timing properties through the initial hard state of the outburst. We show that the inner accretion disc, as measured by relativistic reflection, remains steady throughout this period of the outburst. Nevertheless, subtle spectral variability is observed, which is well explained by a change in coronal geometry. However, characteristic features of the temporal variability -lowfrequency roll-over and QPO frequency -increase drastically in frequency, as the outburst proceeds. This suggests that the variability timescales are governed by coronal conditions rather than solely by the inner disc radius. We also find a strong correlation between X-ray luminosity and coronal temperature. This can be explained by electron pair production with a changing effective radius and a non-thermal electron fraction of ∼ 20%.
The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.
Neutron Star Interior Composition Explorer has a comparatively low background rate, but it is highly variable, and its spectrum must be predicted using measurements unaffected by the science target. We describe an empirical, three-parameter model based on observations of seven pointing directions that are void of detectable sources. Two model parameters track different types of background events, while the third is used to predict a low-energy excess tied to observations conducted in sunlight. An examination of 3556 good time intervals (GTIs), averaging 570 s, yields a median rate (0.4–12 keV; 50 detectors) of 0.87 c s−1, but in 5% (1%) of cases, the rate exceeds 10 (300) c s−1. Model residuals persist at 20%–30% of the initial rate for the brightest GTIs, implying one or more missing model parameters. Filtering criteria are given to flag GTIs likely to have unsatisfactory background predictions. With such filtering, we estimate a detection limit, 1.20 c s−1 (3σ, single GTI) at 0.4–12 keV, equivalent to 3.6 × 10−12 erg cm−2 s−1 for a Crab-like spectrum. The corresponding limit for soft X-ray sources is 0.51 c s−1 at 0.3–2.0 keV, or 4.3 × 10−13 erg cm−2 s−1 for a 100 eV blackbody. These limits would be four times lower if exploratory GTIs accumulate 10 ks of data after filtering at the level prescribed for faint sources. Such filtering selects background GTIs 85% of the time. An application of the model to a 1 s timescale makes it possible to distinguish source flares from possible surges in the background.
We analyze five epochs of Neutron star Interior Composition Explorer (NICER) data of the black hole X-ray binary MAXI J1820+070 during the bright hard-to-soft state transition in its 2018 outburst with both reflection spectroscopy and Fourier-resolved timing analysis. We confirm the previous discovery of reverberation lags in the hard state, and find that the frequency range where the (soft) reverberation lag dominates decreases with the reverberation lag amplitude increasing during the transition, suggesting an increasing X-ray emitting region, possibly due to an expanding corona. By jointly fitting the lag-energy spectra in a number of broad frequency ranges with the reverberation model reltrans, we find the increase in reverberation lag is best described by an increase in the X-ray coronal height. This result, along with the finding that the corona contracts in the hard state, suggests a close relationship between spatial extent of the X-ray corona and the radio jet. We find the corona expansion (as probed by reverberation) precedes a radio flare by ∼5 days, which may suggest that the hard-to-soft transition is marked by the corona expanding vertically and launching a jet knot that propagates along the jet stream at relativistic velocities.Unified Astronomy Thesaurus concepts: Low-mass x-ray binary stars (939); Stellar mass black holes (1611); High energy astrophysics (739); Black hole physics (159); X-ray transient sources (1852)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.