The germanium(II) compound (dpp-BIAN)GeCl (1), which contains the radical anion of dpp-BIAN can be prepared either by reacting free dpp-BIAN ligand with 2 equiv of GeCl2(1,4-dioxane) in Et2O or by metathetical reaction of the sodium salt of dpp-BIAN with germanium dichloride in Et2O or benzene. The reaction of benzene solutions of 1 with 2 or 3 equiv of HCl led to protonation of the dpp-BIAN ligand affording [(dpp-BIAN)(H)2]*+[GeCl3]- (2) and [[(dpp-BIAN)(H)2*+]2(Cl-)]+ [GeCl3]- (3), which incorporate the radical cation of the protonated ligand. Compounds 1-3 have been characterized by elemental analysis, IR, UV-vis, and electron spin resonance (ESR) spectroscopy. Molecular structures of 1-3 were determined by single-crystal X-ray diffraction. In molecule 1, the Ge atom is positioned at the apex of the slightly distorted trigonal pyramid. The Ge-N bond lengths in 1 are 2.0058(19) and 2.004(2) A. The molecular structure of 2 consists of contact ions [(dpp-BIAN)(H)2]+ and [GeCl3]-. In the molecular structure of 3, two radical cations of [(dpp-BIAN)(H)2]+ are "coordinated" by the chlorine anion. The ESR signal of 1 indicates the presence of a dpp-BIAN radical anion and shows a hyperfine structure due to the coupling of an unpaired electron to 14N, 73Ge, 35Cl, 37Cl, and 1H nuclei (AN=0.48 (2 N), AGe=0.96, ACl=0.78 (35Cl), ACl=0.65 (37Cl), AH=0.11 (4 H) mT, g=2.0014). Both 2 and 3 reveal ESR signals of radical cation [(dpp-BIAN)(H)2]*+ (septet, AN=0.53, AH=0.48 mT, g=2.0031).
The bistable cobalt complex containing two symmetrical 3,6 di tert butyl o benzoquinone and one 1,10 phenanthroline moieties as ligands (1) was synthesized. Complex 1 was isolated in the individual state and characterized by IR and ESR spectroscopy, X ray diffraction, magnetochemical studies, and precision calorimetry. A change in temperature causes the re versible metal-ligand electron transfer and spin crossover (redox isomerism) in complex 1 in the crystalline state. The redox isomeric transformation at ∼250 K is accompanied by the phase transition. The structural study at two temperatures confirmed the changes in the molecular and crystal structure associated with the redox isomeric transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.