The persistence of latent HIV-infected cellular reservoirs represents the major hurdle to virus eradication on patients treated with HAART. It has been suggested that successful depletion of such latent reservoirs will require a combination of therapeutic agents that can specifically and efficiently act on cells harboring latent HIV-1 provirus. Using Jurkat-LAT-GFP cells, a tractable model of HIV-1 latency, we have found that bryostatin -1 reactivates HIV-1 through a classical PKC-dependent pathway. Bryostatin-1 also activates MAPKs and NF-κB pathways and synergizes with HDAC inhibitors to reactivate HIV-1 from latency. Bryostatin-1 downregulates the expression of the HIV-1 co-receptors CD4 and CXCR4 and prevented de novo HIV-1 infection in susceptible cells. We applied proteomic methods to investigate major changes in protein expression in Jurkat-LAT-GFP under latency and reactivation conditions. We identified up-regulation of proteins that may be involved in the innate anti-HIV-1 response (NKEF-A and MHD2) and in different cell functions (i.e. cofilin-1 and transgelin-2) of the host cells. PKC agonists may represent a valuable pharmacological approach to purge latent HIV from cellular reservoirs and at the moment, the only clinically available PKC agonist is bryostatin-1. This drug has been tested in numerous clinical trials and its pharmacokinetics and toxicity in humans is well known. Moreover, bryostatin-1 potently synergizes with other HDAC inhibitors commonly used in the medical practice such as valproic acid. Therefore, bryostatin-1, alone or in combination with HDAC inhibitors, could be used in HAART treated patients to validate the hypothesis that reactivating HIV-1 from latency could purge HIV-1 reservoirs.
The ubiquitin E3 ligase SIAH2 is an important regulator of the hypoxic response as it leads to the ubiquitin/proteasomal degradation of prolyl hydroxylases such as PHD3, which in turn increases the stability of hypoxia-inducible factor (HIF)-1α. In the present study, we identify the serine/threonine kinase DYRK2 as SIAH2 interaction partner that phosphorylates SIAH2 at five residues (Ser16, Thr26, Ser28, Ser68, and Thr119). Phosphomimetic and phospho-mutant forms of SIAH2 exhibit different subcellular localizations and consequently change in PHD3 degrading activity. Accordingly, phosphorylated SIAH2 is more active than the wild-type E3 ligase and shows an increased ability to trigger the HIF-1α-mediated transcriptional response and angiogenesis. We also found that SIAH2 knockdown increases DYRK2 stability, whereas SIAH2 expression facilitates DYRK2 polyubiquitination and degradation. Hypoxic conditions cause a SIAH2-dependent DYRK2 polyubiquitination and degradation which ultimately also results in an impaired SIAH2 phosphorylation. Similarly, DYRK2-mediated phosphorylation of p53 at Ser46 is impaired under hypoxic conditions, suggesting a molecular mechanism underlying chemotherapy resistance in solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.