Image processing in the context of Computer vision, is one of the renowned topic of computer science and engineering, which has played a vital role in automation. It has eased in revealing unknown fact in medical science, remote sensing, and many other domains. Digital image processing along with classification and neural network algorithms has enabled grading of various things. One of prominent area of its application is classification of agriculture products and especially grading of seed or cereals and its cultivars. Grading and sorting system allows maintaining the consistency, uniformity and depletion of time. This paper highlights various methods used for grading various agriculture products.
In remote sensing multi-temporal images are used for assorted type of analysis. The image which is taken by satellite or airborne sensors is affected by atmosphere, so the reflected solar radiation of the image is not actual. Image with incorrect reflectance has no means. Such kind of image need to be corrected before usage. Image comprises of list of values, which needs to undergo this correction process. Existing paradigm provides a means to correct a single reflectance value at a time. Thus, for a list of values, this correction process is cumbersome and tedious. This paper presents a paradigm which allows to correct atmospheric correction of satellite signal for single as well as multiple reflectance values using S3 (Satellite Signal Simulator).
In order to explore the possibility of crop estimation, data mining approach being multidisciplinary was followed. The district of Ranga Reddy, Telangana State, India has been chosen for the study and its year wise average yield data of rice and daily weather over a period of 31 years i.e. from 1988-2019 (30th to 47th Standard Meteorological Weeks). Data mining tool WEKA (V3.8.1). Min- Max Normalization technique followed by Feature Selection algorithm, ‘cfsSubsetEval’ was also adopted to improve quality and accuracy of data mining algorithms. Thus, after cleaning and sorting of data, five classifiers viz., Logistic, MLP (Multi Layer Perceptron), J48 Classifier, LMT (Logistic Model Trees) and PART Classifier were employed over the trained data. The results indicated that the function based and tree based models have better performance over rule based model. In case of function based two models examined, viz., Logistic and MLP, the later performed better over Logistic model. Between tree based two models, LMT performed better over J48. Thus, MLP classifier model found to be the best fit model in predicting rice yields as it recorded an accuracy of 74.19 %, sensitivity of 0.742 and precision of 0.743 as compared with other models. The MLP has also achieved the highest F1 score of (0.742) and MCC (0.581).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.