Many opto-electronic and energy efficient devices depend on semiconductors’ direct as well as indirect band gap. Using spin-polarized density functional theory approach, we calculate the electronic structure and magnetic properties of K2Mn3S4. We found that this system has a ferrimagnetic ground state with a saturated magnetic moment of 10μB per unit cell. This was mostly caused by the antiferromagnetic interaction between the Mn (I) and Mn (II) atoms, with individual magnetic moment of 4.2 μB and 4.1 μB, respectively. More significantly, from the density of states and band structure calculations, K2Mn3S4 is noted as a semiconductor with an indirect band gap of 1.1 eV between the top of the valence band of spin up channel and bottom of the conduction bands of spin down channel, indicating the material as a promising candidate for photovoltaic and opto-electronic devices.
Hosted filepaper.pdf available at https://authorea.com/users/34648/articles/557494-electronicmechanical-optical-and-piezoelectric-properties-of-glass-like-sodium-silicate-na-2sio-3-under-compressive-pressure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.