Abstract:A new approach is proposed for estimating the degree of coherence of optical waves. The possibility of transformation of the spatial polarization distribution in the measured spatial intensity distribution for determining the degree of correlation of superposing waves, linearly polarized in the plane of incidence, is shown.
The decomposition of the Mueller matrix of blood films has been carried out using differential matrices with polarized and depolarized parts. The use of a coherent reference wave is applied and the algorithm of digital holographic reconstruction of the field of complex amplitudes is used. On this basis, the 3D Mueller-matrix diffuse tomography method—the reconstruction of distributions of fluctuations of linear and circular birefringence of depolarizing polycrystalline films of human blood is analytically justified and experimentally tested. The dynamics of the change in the magnitude of the statistical moments of the first-fourth order, which characterize layer-by-layer distributions of fluctuations in the phase anisotropy of the blood film, is examined and analyzed. The most sensitive parameters for prostate cancer are the statistical moments of the third and fourth orders, which characterize the asymmetry and kurtosis of fluctuations in the linear and circular birefringence of blood films. The excellent accuracy of differentiation obtained polycrystalline films of blood from healthy donors and patients with cancer patients was achieved.
We introduce a method of azimuthally invariant 3D Mueller-matrix (MM) layer-by-layer mapping of the phase and amplitude parameters of anisotropy of the partially depolarizing layers of benign (adenoma) and malignant (carcinoma) prostate tumours. The technique is based on the analysis of spatial variations of Mueller matrix invariant (MMI) of histological sections of benign (adenoma) and malignant (carcinoma) tissue samples. The phase dependence of magnitudes of the first-to-fourth order statistical moments is applied to characterize 3D spatial distributions of MMI of linear and circular birefringence and dichroism of prostate tumours. The high order statistical moments and phase sections of the optimal differentiation of the polycrystalline structure of tissue samples are revealed. The obtained results are compared with the results obtained by conventional methods utilizing polarized light, including 2D and 3D Mueller matrix imaging.
Abstract:We present the computer simulation results of the spatial distribution of the Poynting vector and illustrate motion of micro and nanoparticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves in the arrangements of two-wave and four-wave superposition on the characteristics of the microparticle's motion has been analyzed. The prospects of studying temporal coherence using the proposed approach are made. For the first time, the possibility of diagnostics of optical currents in liquids caused by polarization characteristics of an optical field alone, using nanoscale metallic particles has been shown experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.