A simple, new way to introduce fragile biomolecules into the gas phase via thermal vaporization of nanoparticles is described. The general utility of this technique for the study of biomolecules is demonstrated by coupling this source to tunable synchrotron vacuum ultraviolet radiation. Fragment-free photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene are detected with signal-to-noise ratios exceeding 100. The 8.0 eV photoionization mass spectrum of tryptophan nanoparticles vaporized at 373 K is dominated by a single parent ion peak that exhibits a 20-fold enhancement over the methylene indole fragment ion. The degree of dissociative photoionization of tryptophan can be precisely controlled either by the thermal energy imparted into the neutral tryptophan molecule or by the energy of the ionizing photon. The results reveal how approximately 0.5 eV changes in internal energy affect both the photoionization mass spectrum of tryptophan and the appearance energy of the daughter ion fragments. This method allows the ionization energies of glycine (9.3 +/- 0.1 eV), tryptophan (7.3 +/- 0.2 eV), phenylalanine (8.6 +/- 0.1 eV), phenylalanine-glycine-glycine (9.1 +/- 0.1 eV), and beta-carotene (<7.0 eV) molecules to be determined directly from the photoionization efficiency spectra.
We report analyses of aerosols collected for the 2002 Intercontinental Transport and Chemical Transformation experiment (ITCT‐2K2). Sampling was conducted 15 April to 25 May 2002. Data are from three sites: a sea level site at Trinidad Head, California, a coastal mountain site 1 km altitude (Trinity Alps), and an inland mountain site near 2 km altitude (Mount Lassen). Aerosols were continuously collected in eight size bins (0.09 to 10 micrometers aerodynamic diameter) using eight‐stage rotating drum impactors. Samples were analyzed in 3‐hour time steps by synchrotron x‐ray fluorescence. We find the following. (1) Aerosol chemical composition at Trinidad Head was generally dominated by marine aerosols with varying minor contributions from local sources. Despite the presence of Asian continental aerosol above the marine boundary layer, significant concentrations of Asian aerosols were observed at sea level only during a strong frontal passage between 22 and 25 April. (2) At the elevated sites, aerosol elemental composition was predominantly Asian despite wide swings in concentration. Analysis of soil‐forming elements shows that Asian continental dust and associated combustion products overwhelmed local‐source aerosols through the first half of the sampling period; in the latter half, Asian aerosols present in the free troposphere were regularly delivered to the mountain sampling sites by nocturnal subsidence. (3) Asian aerosols in the lower free troposphere, although highly variable, were very persistent, not arriving only in discrete “transport events.” We conclude that throughout the experiment the aerosols in the lower free troposphere over the northeastern Pacific Ocean and western North America were dominated by continental outflow from Asia, with little marine or North American continental influence. Viewed in the context of previously published analyses of the long‐term aerosol history for Mount Lassen that showed frequent, strong Asian influence throughout spring, summer, and fall, the Asian impact appears likely to be quasi‐continuous for much of the year.
[1] Two collocated, eight-stage rotating drum impactors were deployed at Trinidad Head (California) during the spring of 2002 as part of the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment. One of the samplers operated at ambient relative humidity while the other was operated at a relative humidity of 55%. The impaction substrates from these samplers were analyzed using synchrotron X-ray fluorescence (SXRF) to provide continuous measurements of the size-resolved aerosol elemental composition with 3-hour time resolution. The aerosol elemental composition data identified three significant mineral dust episodes near the beginning of the time series. The backward air mass trajectory calculations from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the PM 10 to PM 2.5 elemental mass ratios are consistent with the long-range transport of mineral dust from Asian sources. The data from the paired ambient relative humidity and low-relative-humidity samplers show that the aluminum, silicon, and iron elemental mass distributions are a function of relative humidity. In each case, the elemental mass distributions shifted toward smaller sizes as the relative humidity was reduced. This behavior indicates that the mineral dust transported from Asia to the west coast of the United States is somewhat hygroscopic upon its arrival. The hygroscopic nature of the aged mineral dust should increase its ability to nucleate cloud droplets (i.e., act as cloud condensation nuclei). Measurements of transported Asian mineral dust made at a high-elevation mountain site in Oregon (i.e., Crater Lake National Park) during the spring of 2002 show a strong correlation between the silicon and sulfur elemental mass concentrations. The ratio of calcium to sulfur makes it unlikely that this coarse sulfur is derived from gypsum (i.e., CaSO 4 ). Instead, it indicates that the coarse mineral dust most likely accumulates sulfate coatings either near the source region or during transport across the Pacific Ocean.
A synchrotron radiation based aerosol time-of-flight mass spectrometer using tunable vacuum-ultraviolet (VUV) light is described for real-time analysis of organic compounds in ultrafine and large aerosol particles. Particles are sampled from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. As the particles enter the source region, they impinge on a cartridge heater and are vaporized. The particle vapor expands back into the source region and is softly ionized with tunable, quasicontinuous VUV light generated with synchrotron radiation. The radiation can be tuned to an energy close to the ionization energy of the sample molecules, thus minimizing the complications resulting from ion fragmentation. Photoionization efficiency scans (photon scans) can be readily collected, which permit measurement of the molecule's ionization energy and fragmentation onsets. Four high molecular weight, low vapor pressure organic compounds of importance in atmospheric aerosols are analyzed and their ionization energies measured with uncertainties of +/-60 meV. These are oleic acid (8.68 eV), linoleic acid (8.52 eV), linolenic acid (8.49 eV), and cholesterol (8.69 eV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.