The rising need for automation of systems has effected the development of text detection and recognition from images to a large extent. Text recognition has a wide range of applications, each with scenario dependent challenges and complications. How can these challenges be mitigated? What image processing techniques can be applied to make the text in the image machine readable? How can text be localized and separated from non textual information? How can the text image be converted to digital text format? This paper attempts to answer these questions in chosen scenarios. The types of document images that we have surveyed include general documents such as newspapers, books and magazines, forms, scientific documents, unconstrained documents such as maps, architectural and engineering drawings, and scene images with textual information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.