We have studied the complex decomposition mechanism of cubic γ-Mg(BH4)2 (Ia3̅d, a = 15.7858(1) Å) by in-situ synchrotron X-ray diffraction, temperature-programmed desorption, visual observation of the melt, and Fourier transform infrared (FTIR) spectroscopy. The decomposition and release of hydrogen proceeds through eight distinct steps, including two polymorphic transitions before melting, with a new ε-Mg(BH4)2 phase at ca. 150 °C. After melting, strong changes in sample color from yellow to brown to gray are consistent with the unknown Mg–B–H phase(s) (that diffract with high d-spacing halos) in the sample changing from an average composition of MgB2H5.3 at 325 °C, to MgB2.9H3.2 at 350 °C, and to MgB4.0H3.7 by 450 °C. From 350 to 450 °C, the crystalline Mg proportion increases. No combination of previously assigned anionic B n H m species (including MgB12H12 and Mg(B3H8)2) can account for the average composition of the unknown proportion of the sample. This is supported by FTIR spectra showing an absence of terminal B–H resonances in the 2500 cm–1 region that are present for B12H12 and B3H8 anionic species. Our combined analysis strongly indicates the presence of as yet unidentified Mg–B–H phase(s) in postmelted decomposed Mg(BH4)2 samples.
The purpose of this study is to compare the thermal and structural stability of single phase Li2B12H12 with the decomposition process of LiBH4. We have utilized differential thermal analysis/thermogravimetry (DTA/TGA) and temperature programmed desorption-mass spectroscopy (TPD-MS) in combination with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy to study the decomposition products of both LiBH4 and Li2B12H12 up to 600 °C, under both vacuum and hydrogen (H2) backpressure. We have synthesized highly pure single phase crystalline anhydrous Li2B12H12 (Pa-3 structure type) and studied its sensitivity to water and the process of deliquescence. Under either vacuum or H2 backpressure, after 250 °C, anhydrous Li2B12H12 begins to decompose to a substoichiometric Li2B12H12-x composition, which displays a very broad diffraction halo in the d-spacing range 5.85-7.00 Å, dependent on the amount of H released. Aging Pa-3 Li2B12H12 under 450 °C/125 bar H2 pressure for 24 h produces a previously unobserved well-crystallized β-Li2B12H12 polymorph, and a nanocrystalline γ-Li2B12H12 polymorph. The isothermal release of hydrogen pressure from LiBH4 along the plateau and above the melting point (Tm = 280 °C) initially results in the formation of LiH and γ-Li2B12H12. The γ-Li2B12H12 polymorph then decomposes to a substoichiometric Li2B12H(12-x) composition. The Pa-3 Li2B12H12 phase is not observed during LiBH4 decomposition. Decomposition of LiBH4 under vacuum to 600 °C produces LiH and amorphous B with some Li dissolved within it. The lack of an obvious B-Li-B or B-H-B bridging band in the FTIR data for Li2B12H(12-x) suggests the H poor B12H(12-x) pseudo-icosahedra remain isolated and are not polymerized. Li2B12H(12-x) is persistent to at least 600 °C under vacuum, with no LiH formation observable and only a ca. d = 7.00 Å halo remaining. By 650 °C, Li2B12H(12-x) is finally decomposed, and amorphous B can be observed, with no LiH reflections. Further studies are required to clarify the structural symmetry of the β- and γ-Li2B12H12 polymorphs and substoichiometric Li2B12H(12-x).
The thermal decomposition of anhydrous Pa3[combining macron] Li2B12H12 was studied in situ by high resolution synchrotron X-ray diffraction. A first-order phase transition can be observed at 355 °C where the unit cell volume expands by ca. 8.7%. The expanded β-Li2B12H12 polymorph simultaneously decomposes to a hydrogen poor γ-Li2B12H12-x phase. Expansion of the unit cell across the discontinuity is consistent with reorientational motion of B12H12(2-) anions, and the presence of a frustrated Li(+) lattice indicating Li ion conduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.