SummaryA system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.