Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
Numerous problems arising in engineering applications can have several objectives to be satisfied. An important class of problems of this kind is lexicographic multi-objective problems where the first objective is incomparably more important than the second one which, in its turn, is incomparably more important than the third one, etc. In this paper, Lexicographic Multi-Objective Linear Programming (LMOLP) problems are considered. To tackle them, traditional approaches either require solution of a series of linear programming problems or apply a scalarization of weighted multiple objectives into a single-objective function. The latter approach requires finding a set of weights that guarantees the equivalence of the original problem and the single-objective one and the search of correct weights can be very time consuming. In this work a new approach for solving LMOLP problems using a recently introduced computational methodology allowing one to work numerically with infinities and infinitesimals is proposed. It is shown that a smart application of infinitesimal weights allows one to construct a single-objective problem avoiding the necessity to determine finite weights. The equivalence between the original multi-objective problem and the new single-objective one is proved. A simplex-based algorithm working with finite and infinitesimal numbers is proposed, implemented, and discussed. Results of some numerical experiments are provided
Equilibrium problems provide a mathematical framework which includes optimization, variational inequalities, fixed-point and saddle point problems, and noncooperative games as particular cases. This general format received an increasing interest in the last decade mainly because many theoretical and algorithmic results developed for one of these models can be often extended to the others through the unifying language provided by this common format. This survey paper aims at covering the main results concerning the existence of equilibria and the solution methods for finding them
Medical ultrasonography is a powerful and cost-effective diagnostic technique. To date, high-end medical imaging systems are able to efficiently implement real-time image formation techniques that can dramatically improve the diagnostic capabilities of ultrasound. Highly performing and thermally efficient ultrasound probes are then required to successfully enable the most advanced techniques. In this context, ultrasound transducer technology is the current limiting factor. Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electro-mechanical systems (MEMS)-based devices that have been widely recognized as a valuable alternative to piezoelectric transducer technology in a variety of medical imaging applications. Wideband operation, good thermal efficiency, and low fabrication cost, especially for those applications requiring high-volume production of small-area dice, are strength factors that may justify the adoption of this MEMS technology in the medical ultrasound imaging field. This paper presents the design, development, fabrication, and characterization of a 12-MHz ultrasound probe for medical imaging, based on a CMUT array. The CMUT array is microfabricated and packed using a novel fabrication concept specifically conceived for imaging transducer arrays. The performance of the developed probe is optimized by including analog front-end reception electronics. Characterization and imaging results are used to assess the performance of CMUTs with respect to conventional piezoelectric transducers.
Ultrasound beams propagating in biological tissues undergo distortions due to local inhomogeneities of the acoustic parameters and the nonlinearity of the medium. The spectral analysis of the radio-frequency (RF) backscattered signals may yield important clinical information in the field of tissue characterization, as well as enhancing the detectability of tissue parenchymal diseases. In this paper, we propose a new tissue spectral imaging technique based on the wavelet packets (WP) decomposition. In a conventional ultrasound imaging system, the received echo-signals are generally decimated to generate a medical image, with a loss of information. With the proposed approach, all the RF data are processed to generate a set of frequency subband images. The ultrasound echo signals are simultaneously frequency decomposed and decimated, by using two quadrature mirror filters, followed by a dyadic subsampling. In addition, to enhance the lesion detectability and the image quality, we apply a nonlinear filter to reduce noise in each subband image. The proposed method requires simple additional signal processing and it can be implemented on any real-time imaging system. The frequency subband images, which are available simultaneously, can be either used in a multispectral display or summed up together to reduce speckle noise. To localize the different frequency response in the tissues, we propose a multifrequency display method where three different subband images, chosen among those available, are encoded as red, green, and blue intensities (RGB) to create a false-colored RGB image. According to the clinical application, different choices can evidence different spectral proprieties in the biological tissue under investigation. To enhance the lesion contrast in a grey-level image, one of the possible methods is the summation of the images obtained from narrow frequency subbands, according to the frequency compounding technique. We show that by adding the denoised subband images created with the WP decomposition, the contrast-to-noise ratio in two phantom images is largely increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.