The use of a VCO-based integrator and quantizer within a continuous-time (CT) 16 analog-to-digital converter (ADC) structure is explored, and a custom prototype in a 0.13 m CMOS with a measured performance of 81.2/78.1 dB SNR/SNDR over a 20 MHz bandwidth while consuming 87 mW from a 1.5 V supply and occupying an active area of 0.45 mm 2 demonstrated. A key innovation is the explicit use of the oscillator's output phase to avoid the signal distortion that had severely limited the performance of earlier VCO-based ADCs, which had made use of its output frequency only. The proposed VCO-based integrator and quantizer structure enables fourth-order noise shaping with only three opamp-based integrators.
Photonic Analog-to-Digital Conversion (ADC) has a long history. The premise is that the superior noise performance of femtosecond lasers working at optical frequencies enables us to overcome the bottleneck set by jitter and bandwidth of electronic systems and components. We discuss and demonstrate strategies and devices that enable the implementation of photonic ADC systems with emerging electronic-photonic integrated circuits based on silicon photonics. Devices include 2-GHz repetition rate low noise femtosecond fiber lasers, Si-Modulators with up to 20 GHz modulation speed, 20 channel SiN-filter banks, and Ge-photodetectors. Results towards a 40GSa/sec sampling system with 8bits resolution are presented.
Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a MachZehnder interferometer architecture and achieves a V π L of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.