Introduction Noninvasive ventilation is a safe and eff ective method to treat acute respiratory failure, minimizing the respiratory workload and oxygenation. Few studies compare the effi cacy of diff erent types of noninvasive ventilation interfaces and their adaptation. Objective To identify the most frequently noninvasive ventilation interfaces used and eventual problems related to their adaptation in critically ill patients. Methods We conducted an observational study, with patients older than 18 years old admitted to the intensive care and step-down units of the Albert Einstein Jewish Hospital that used noninvasive ventilation. We collected data such as reason to use noninvasive ventilation, interface used, scheme of noninvasive ventilation used (continuously, periods or nocturnal use), adaptation, and reasons for nonadaptation. Results We evaluated 245 patients with a median age of 82 years (range of 20 to 107 years). Acute respiratory failure was the most frequent cause of noninvasive ventilation used (71.3%), followed by pulmonary expansion (10.24%), after mechanical ventilation weaning (6.14%) and sleep obstructive apnea (8.6%). The most frequently used interface was total face masks (74.7%), followed by facial masks in 24.5% of the patients, and 0.8% used performax masks. The use of noninvasive ventilation for periods (82.4%) was the most common scheme of use, with 10.6% using it continuously and 6.9% during the nocturnal period only. Interface adaptation occurred in 76% of the patients; the 24% that did not adapt had their interface changed to improve adaptation afterwards. The total face mask had 75.5% of interface adaptation, the facial mask had 80% and no adaptation occurred in patients that used the performax mask. The face format was the most frequent cause of nonadaptation in 30.5% of the patients, followed by patient's related discomfort (28.8%), air leaking (27.7%), claustrophobia (18.6%), noncollaborative patient (10.1%), patient agitation (6.7%), facial trauma or lesion (1.7%), type of mask fi xation (1.7%), and 1.7% patients with other causes. Conclusion Acute respiratory failure was the most frequent reason for noninvasive ventilation use, with the total face mask being the most frequent interface used. The most common causes of interface nonadaptation were face format, patient-related discomfort and air leaking, showing improvement of adaptation after changing the interface used. P2 Exercise training reduces oxidative damage in skeletal muscle of septic rats
Objective To examine the effects of short-term cyclic stretch on apoptosis in alveolar type II cells (A549). To study in vitro the direct influence of alveolar type II cells on mechanical stretch. Methods A549 were treated with different doses of lipopolysaccharide (LPS), 0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml, and then A549 were lengthened 5%, 15%, 30% using a FLEXCELL tension unit 4000, a vacuum-driven device that applies strain to cells, which were cultured in six-well plates coated with collagen-I, and 12 cycles/min for 4 hours. Apoptosis was measured using the flow cytometry method that measures annexin V and propidium iodide (PI) staining. The morphological changes of apoptotic cells were observed by transmission electron microscope. Results Apoptosis could be induced in alveolar type II cells (A549) by mechanical stretch. The percentage of annexin V + PI cells increased after being treated with cyclic stretch for 4 hours by 5%, 15%, 30% in all groups. The morphological features of apoptotic cells demonstrated by transmission electron microscope were as follows: shrinkage of the cell, chromatin condensation and aggregation under the nuclear membrane as a crescent or lump, membrane-encapsulated nuclear fragment or cell organ formed by invagination of the cell membrane, and apoptotic body formation followed by vacuolization. Conclusion Apoptosis induced by mechanical stretch and LPS is dose dependent. Mechanical stretch aggravates apoptosis especially in cells treated with LPS. Annexin V and PI double staining is a specific, sensitive, and quantitative method for analyzing apoptotic cells. It is also helpful to clarify the protective mechanism of low-volume ventilation in ARDS. Acknowledgement The study was funded by the 'One Hundred People' project of Shanghai Sanitary Bureau (03-77-20). Introduction Although extrapulmonary ALI/ARDS is a common clinical entity, most animal models used to study this disease are induced by direct lung injuries. Our intention was therefore to investigate whether a condition resembling ALI/ARDS develops during the course of a fecal peritonitis in pigs; in that case experimental peritonitis would also prove as a clinically relevant ARDS model. Methods In 10 anesthetized, mechanically ventilated, and instrumented pigs fecal peritonitis was induced by inoculating autologue feces pellets suspended in saline. Mechanical ventilation was set with VT = 8 ml/kg, FiO 2 to reach a SaO 2 target of >90%, PEEP = 10 cmH 2 O if PaO 2 /FiO 2 > 300 and 12 cmH 2 O if PaO 2 /FiO 2 < 300, and respiratory rate to obtain a PaCO 2 of 35-45 mmHg. Before as well as 12 and 24 hours after peritonitis induction we measured the PaO 2 /FiO 2 ratio, the total compliance of the respiratory system (C), calculated as VT/(P plateau -PEEP) and inspiratory airway resistance (R i ) calculated as (P max -P plateau ) / mean inspiratory flow. Data are mean [range]. Results For data see Table 1. During the course of the 24-hour study period, six of 10 animals developed gas exchange deteriorations consistent w...
Hydrogen sulfide is produced endogenously by a variety of enzymes involved in cysteine metabolism. Clinical data indicate that endogenous levels of hydrogen sulfide are diminished in various forms of cardiovascular diseases. The aim of the current study was to investigate the effects of hydrogen sulfide supplementation on cardiac function during reperfusion in a clinically relevant experimental model of cardiopulmonary bypass. Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 minutes of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or the sodium sulfide infusion (1 mg/kg/hour, n = 6). Biventricular hemodynamic variables were measured by combined pressure-volume-conductance catheters. Coronary and pulmonary blood flow, vasodilator responses to acetylcholine and sodiumnitroprusside and pulmonary function were also determined. Administration of sodium sulfide led to a significantly better recovery of left and right ventricular systolic function (P < 0.05) after 60 minutes of reperfusion. Coronary blood flow was also significantly higher in the sodium sulfide-treated group (P < 0.05). Sodium sulfide treatment improved coronary blood flow, and preserved the acetylcholine-induced increases in coronary and pulmonary blood (P < 0.05). Myocardial ATP levels were markedly improved in the sulfide-treated group. Thus, supplementation of sulfide improves the recovery of myocardial and endothelial function and energetic status after hypothermic cardiac arrest during cardiopulmonary bypass. These beneficial effects occurred without any detectable adverse hemodynamic or cardiovascular effects of sulfide at the dose used in the current study. The aim of the current study was to test potential cytoprotective and anti-inflammatory effects of the novel biological mediator hydrogen sulfide in murine models. Murine J774 macrophages were grown in culture and exposed to cytotoxic concentrations of nitrosoglutathione, or peroxynitrite (a reactive species formed from the reaction of nitric oxide and superoxide). Pretreatment of the cells with sodium sulfide (60-300 µM) reduced the loss of cell viability elicited by the nitric oxide donor compound (3 mM) or by peroxynitrite (3 mM), as measured by the MTT method. Sodium sulfide did not affect cell viability in the concentration range tested. In mice subjected to bacterial lipopolysaccharide (LPS, 5 mg/kg i.p.), treatment of the animals with sodium sulfide (0.2 mg/kg/hour for 4 hours, administered in Alzet minipumps) reduced the LPSinduced increase in plasma IL-1β and TNFα levels. These responses were attenuated when animals were pretreated with the heme oxygenase inhibitor tin-protoporphyrin IX (6 mg/kg). The current results point to the cytoprotective and anti-inflammatory effects of hydrogen sulfide, in cells exposed to nitrosative stress, and in animals subjected to endotoxemia. Introduction It has been previously shown that the two forms of acute cholecystitis, acute acalculous cholecystiti...
Objectives To characterize an experimental model of pulmonary embolism by studying hemodynamics, lung mechanics and histopathologic derangements caused by pulmonary microembolism in pigs. To identify lung alterations after embolism that may be similar to those evidenced in pulmonary inflammatory conditions. Materials and methods Ten Large White pigs (weight 35-42 kg) were instrumented with arterial and pulmonary catheters, and pulmonary embolism was induced in five pigs by injection of polystyrene microspheres (diameter ~300 µM), in order to obtain a pulmonary mean arterial pressure of twice the baseline value. Five other animals injected with saline served as controls. Hemodynamic and respiratory data were collected and pressure x volume curves of the respiratory system were performed by a quasi-static low flow method. Animals were followed for 12 hours, and after death lung fragments were dissected and sent to pathology. Results Pulmonary embolism induced a significant reduction in stroke volume (71 ± 18 ml/min/bpm pre vs 36 ± 9 ml/min/bpm post, P < 0.05), an increase in pulmonary mean arterial pressure (27 ± 4 mmHg pre vs 39 ± 6 mmHg post, P < 0.05) and pulmonary vascular resistance (193 ± 122 mmHg/l/min pre vs 451 ± 149 mmHg/l/min post, P < 0.05). Respiratory dysfunction was evidenced by significant reductions in the PaO 2 /FiO 2 ratio (480 ± 50 pre vs 159 ± 55 post, P < 0.05), the dynamic lung compliance (27 ± 6 ml/cmH 2 O pre vs 19 ± 5 ml/cmH 2 O post, P < 0.05), the increase in dead space ventilation (20 ± 4 pre vs 47 ± 20 post, P < 0.05) and, the shift of pressure x volume curves to the right, with reduction in pulmonary hysteresis. Pathology depicted inflammatory neutrophil infiltrates, alveolar edema, collapse and hemorrhagic infarctions. Conclusion This model of embolism is associated with cardiovascular dysfunction, as well as respiratory injury characterized by a decrease in oxygenation, lung compliance and hysteresis. Pathology findings were similar to those verified in inflammatory pulmonary injury conditions. This model may be useful to study pathophysiology, as well as pharmacologic and ventilatory interventions useful to treat pulmonary embolism. P6 Hemodynamic and metabolic features of a porcine systemic low flow state model
Introduction Cardiac surgery with cardiopulmonary bypass (CPB) is a recognized trigger of systemic inflammatory response, usually related to postoperative acute lung injury (ALI). As an attempt to dampen inflammatory response, steroids have been perioperatively administered to patients. Macrophage migration inhibitory factor (MIF), a regulator of the endotoxin receptor, is implicated in the pathogenesis of ALI. We have previously detected peak circulating levels of MIF, 6 hours post CPB. Experimental data have shown that steroids may induce MIF secretion by mononuclear cells. This study aims to correlate levels of MIF assayed 6 hours post CPB to the intensity of postoperative pulmonary dysfunction, analysing the impact of perioperative steroid administration. MethodsWe included patients submitted to cardiac surgery with CPB, electively started in the morning, performed by the same team under a standard technique except for the addition of methylprednisolone (15 mg/kg) to the CPB priming solution for patients from group MP (n = 37), but not for the remaining patients -group NS (n = 37). MIF circulating levels were assayed at the anesthesia induction, 3, 6, and 24 hours after CPB. A standard weaning protocol with fast track strategy was adopted, and indicators of organ dysfunction and therapeutic intervention were registered during the first 72 hours postoperative.Results Levels of MIF assayed 6 hours post CPB correlated directly to the postoperative duration of mechanical ventilation (P = 0.014, rho = 0.282) and inversely to PaO 2 /FiO 2 ratio (P = 0.0021, rho = -0.265). No difference in MIF levels was noted between the groups. The duration of mechanical ventilation was higher (P = 0.005) in the group MP (7.92 ± 6.0 hours), compared with the group NS (4.92 ± 3.6 hours). ConclusionCirculating levels of MIF assayed 6 hours post CPB are correlated to postoperative pulmonary performance. Immunosuppressive doses of methylprednisolone did not affect circulating levels of MIF and may be related to prolonged mechanical ventilation. P2Immediate and short-term safety of catheter-based autologous bone marrow-derived mononuclear cell transplantation into myocardium of patients with severe ischemic heart failure Background Bone marrow-derived mononuclear cell (BM-MNC) transplantation into the myocardium has been proposed as a new therapy for ischemic heart failure (HF). Successful cellular therapy for HF using myoblast transplantation has been reported previously but malignant arrhythmias (MA) were an issue. We investigated the safety of BM-MNC transplantation into the myocardium for MA.Methods A prospective study to evaluate the safety of autologous BM-MNC transplantation in patients with severe ischemic HF not amenable to myocardial revascularization was conducted. Bone marrow was harvested from the iliac crest and BM-MNCs were selected by Ficoll gradient. Hibernating myocardium areas were targeted using electromechanical mapping in catheter-based subendocardial injections (MyoStar, Cordis, Miami Lakes, FL, USA). All patien...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.