Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensors for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280 cal g–1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti.
Nine PHWR type fuel elements with reduced length were irradiated in loop A of the TRIGA Research Reactor of INR Pitesti. The primary objective of the test was to determine the performance of nuclear fuel fabricated at INR Pitesti at high linear powers in pressurized water conditions. Six fuel elements were irradiated with a ramp power history, achieving a maximum power of 45 kW/m during pre-ramp and of 64 kW/m in the ramp. The maximum discharge burnup was of 216 MWh/kgU. Another three fuel elements with reduced length were irradiated with declining power history. At the beginning of irradiation the fuel elements achieved a maximum linear power of 66 kW/m. The maximum fuel power was about 1.3 times the maximum expected in PHWR. The maximum discharge burnup was 205 MWh/kgU. The elements were destructively examined in the hot cells of INR Pitesti. Temperature-sensitive parameters such as UO2 grain growth, fission-gas release and sheath deformations were examined. The tests proved the feasibility of irradiating PHWR type fuel elements at linear powers up to 66 kW/m under pressurized water conditions and demonstrated the possibility of more flexible operation of this fuel in power reactors. This paper presents the results of the investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.