This article reports on the findings of a study regarding the sulfur behavior across a Sasol-Lurgi gasifier. This was undertaken to understand the behavior of the various sulfur-bearing components in the coal, as they are exposed to the conditions in the gasifier. In this study, conventional characterization techniques were employed to monitor the behavior of sulfur-bearing mineral matter across the gasifier. It was observed from the study that the sulfur-bearing mineral (pyrite) in the coal structure undergoes various changes with pyrite being transformed to pyrrhotite and then to various oxides of iron with the subsequent loss of sulfur to form H 2 S. A low proportion of the sulfur species including the organically associated sulfur was encapsulated by a melt that was formed by the interaction between kaolinite and fluxing minerals (pyrite, calcite, and dolomite/ ankerite) present in the coal at elevated temperatures and pressure, thereby ending up in the ash. The remaining small proportions of sulfur-bearing mineral matter including pyrite and organically bound sulfur in the unburned carbon in the carbonaceous shales also report to the ash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.