These results demonstrate for the first time the feasibility of engaging seniors in a large-scale deployment of in-home activity assessment technology and the successful collection of these activity metrics. We plan to use this platform to determine if continuous unobtrusive monitoring may detect incident cognitive decline.
The Microsoft Kinect camera is becoming increasingly popular in many areas aside from entertainment, including human activity monitoring and rehabilitation. Many people, however, fail to consider the reliability and accuracy of the Kinect human pose estimation when they depend on it as a measuring system. In this paper we compare the Kinect pose estimation (skeletonization) with more established techniques for pose estimation from motion capture data, examining the accuracy of joint localization and robustness of pose estimation with respect to the orientation and occlusions. We have evaluated six physical exercises aimed at coaching of elderly population. Experimental results present pose estimation accuracy rates and corresponding error bounds for the Kinect system.
Background Mild disturbances of higher order activities of daily living are present in people diagnosed with mild cognitive impairment (MCI). These deficits may be difficult to detect among those still living independently. Unobtrusive continuous assessment of a complex activity such as home computer use may detect mild functional changes and identify MCI. We sought to determine whether long-term changes in remotely monitored computer use differ in persons with MCI in comparison to cognitively intact volunteers. Methods Participants enrolled in a longitudinal cohort study of unobtrusive in-home technologies to detect cognitive and motor decline in independently living seniors were assessed for computer usage (number of days with use, mean daily usage and coefficient of variation of use) measured by remotely monitoring computer session start and end times. Results Over 230,000 computer sessions from 113 computer users (mean age, 85; 38 with MCI) were acquired during a mean of 36 months. In mixed effects models there was no difference in computer usage at baseline between MCI and intact participants controlling for age, sex, education, race and computer experience. However, over time, between MCI and intact participants, there was a significant decrease in number of days with use (p=0.01), mean daily usage (~1% greater decrease/month; p=0.009) and an increase in day-to-day use variability (p=0.002). Conclusions Computer use change can be unobtrusively monitored and indicate individuals with MCI. With 79% of those 55–64 years old now online, this may be an ecologically valid and efficient approach to track subtle clinically meaningful change with aging.
Physical performance measures predict health and function in older populations. Walking speed in particular has consistently predicted morbidity and mortality. However, single brief walking measures may not reflect a person’s typical ability. Using a system that unobtrusively and continuously measures walking activity in a person’s home we examined walking speed metrics and their relation to function. In 76 persons living independently (mean age, 86) we measured every instance of walking past a line of passive infra-red motion sensors placed strategically in their home during a four-week period surrounding their annual clinical evaluation. Walking speeds and the variance in these measures were calculated and compared to conventional measures of gait, motor function and cognition. Median number of walks per day was 18 ± 15. Overall mean walking speed was 61 ± 17 cm/sec. Characteristic fast walking speed was 96 cm/sec. Men walked as frequently and fast as women. Those using a walking aid walked significantly slower and with greater variability. Morning speeds were significantly faster than afternoon/evening speeds. In-home walking speeds were significantly associated with several neuropsychological tests as well as tests of motor performance. Unobtrusive home walking assessments are ecologically valid measures of walking function. They provide previously unattainable metrics (periodicity, variability, range of minimum and maximum speeds) of everyday motor function.
Gait velocity has been shown to quantitatively estimate risk of future hospitalization, has been shown to be a predictor of disability, and has been shown to slow prior to cognitive decline. In this paper, we describe a system for continuous and unobtrusive in-home assessment of gait velocity, a critical metric of function. This system is based on estimating walking speed from noisy time and location data collected by a "sensor line" of restricted view passive infrared (PIR) motion detectors. We demonstrate the validity of our system by comparing with measurements from the commercially available GAITRite® Walkway System gait mat. We present the data from 882 walks from 27 subjects walking at three different subject-paced speeds (encouraged to walk slowly, normal speed, or fast) in two directions through a sensor line. The experimental results show that the uncalibrated system accuracy (average error) of estimated velocity was 7.1cm/s (SD = 11.3cm/s), which improved to 1.1cm/s (SD = 9.1cm/s) after a simple calibration procedure. Based on the average measured walking speed of 102 cm/s our system had an average error of less than 7% without calibration and 1.1% with calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.