In this paper, we extend the class of energy functions for which the optimal \alpha-expansion and \alpha \beta-swap moves can be computed in polynomial time. Specifically, we introduce a novel family of higher order clique potentials, and show that the expansion and swap moves for any energy function composed of these potentials can be found by minimizing a submodular function. We also show that for a subset of these potentials, the optimal move can be found by solving an st-mincut problem. We refer to this subset as the {\cal P};n Potts model. Our results enable the use of powerful \alpha-expansion and \alpha \beta-swap move making algorithms for minimization of energy functions involving higher order cliques. Such functions have the capability of modeling the rich statistics of natural scenes and can be used for many applications in Computer Vision. We demonstrate their use in one such application, i.e., the texture-based image or video-segmentation problem.
Dense conditional random fields (CRF) with Gaussian pairwise potentials have emerged as a popular framework for several computer vision applications such as stereo correspondence and semantic segmentation. By modeling long-range interactions, dense CRFs provide a more detailed labelling compared to their sparse counterparts. Variational inference in these dense models is performed using a filtering-based mean-field algorithm in order to obtain a fully-factorized distribution minimising the Kullback-Leibler divergence to the true distribution. In contrast to the continuous relaxation-based energy minimisation algorithms used for sparse CRFs, the mean-field algorithm fails to provide strong theoretical guarantees on the quality of its solutions. To address this deficiency, we show that it is possible to use the same filtering approach to speed-up the optimisation of several continuous relaxations. Specifically, we solve a convex quadratic programming (QP) relaxation using the efficient Frank-Wolfe algorithm. This also allows us to solve difference-of-convex relaxations via the iterative concave-convex procedure where each iteration requires solving a convex QP. Finally, we develop a novel divide-and-conquer method to compute the subgradients of a linear programming relaxation that provides the best theoretical bounds for energy minimisation. We demonstrate the advantage of continuous relaxations over the widely used mean-field algorithm on publicly available datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.