Summary. Background: Multimerin 1 (MMRN1) is a large, homopolymeric adhesive protein, stored in platelets and endothelium, that when released, binds to activated platelets, endothelial cells and the extracellular matrix. Objectives: The goals of our study were to determine if (i) MMRN1 supports adhesion of resting and/or activated platelets under conditions of blood flow, and (ii) if MMRN1 enhances platelet adhesion to types I and III collagen. Patients/methods: Platelet adhesion was evaluated using protein-coated microcapillaries, with or without added adhesive proteins and receptor antibodies. Platelets from healthy controls, Glanzmann thrombasthenia (GT) and severe von Willebrand factor (VWF)-deficient donors were tested. Results: MMRN1 supported the adhesion of activated, but not resting, washed platelets over a wide range of shear rates. At low shear (150 s )1 ), this adhesion was supported by integrins avb3 and glycoprotein (GP) Iba but it did not require integrins aIIbb3 or VWF. At high shear (1500 s ), adhesion to MMRN1 was supported by b3 integrin-independent mechanisms, involving GPIba and VWF, that did not require platelet activation when VWF was perfused over MMRN1 prior to platelets. MMRN1 bound to types I and III collagen, independent of VWF, however, its enhancing effects on platelet adhesion to collagen at high shear were VWF dependent. Conclusions: MMRN1 supports platelet adhesion by VWFdependent and -independent mechanisms that vary by flow rate. Additionally, MMRN1 binds to, and enhances, platelet adhesion to collagen. These findings suggest that MMRN1 could function as an adhesive ligand that promotes platelet adhesion at sites of vascular injury.
Currently, a wide array of plant preparations exerting health-promoting properties are commonly used as feed additives. Among them, Cichorium intybus L. have gained considerable attention as a source of compounds showing prebiotic character. Large body of evidence suggests that products of prebiotic fermentation (short-chain fatty acids) may influence the expression of genes encoding liver enzymes involved in the regulation of energetic metabolism. Given the above, the present study was aimed at estimating the influence of a diet supplemented with chicory root or water extract of chicory inulin on liver proteome in growing pigs. The study was performed on 24 castrated male piglets (PIC × Penarlan P76). Animals were assigned to three equal groups (n = 8) and fed cereal-based isoenergetic diets: control and supplemented with 2% of inulin extract from chicory root or 4% of dried chicory root. Liver proteins were separated using two-dimensional electrophoresis, followed by the identification of statistically valid protein spots with the aid of MALDI-TOF mass spectrometry. Both experimental factors significantly modulated the expression of liver proteins associated with energetic metabolism, particularly those involved in cholesterol and triglyceride metabolism. Additionally, both dietary additives induced increased expression of proteins involved in hepatocyte protection against oxidative stress. In the present study, we have shown for the first time that diet supplementation with dried chicory root or inulin caused significant changes in the expression of liver cytoskeletal proteins. Close attention should be paid to the downregulation of cytokeratin 18, hepatic acute phase protein that can enhance the anti-inflammatory properties of inulin-type fructans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.