A wide‐ranging study of Suzuki reactions which use nitrogen‐containing heterocycles is described (see scheme; dba=dibenzylideneacetone, Cy=cyclohexyl). This method is highly versatile (a single procedure was used for all substrates, including boronate esters and trifluoroborates), compatible with a variety of unprotected functionalities (e.g., NH2‐ and OH‐substituted substrates), and efficient even with unactivated aryl chlorides.
Eine umfassende Studie zu Suzuki‐Reaktionen mit Stickstoffheterocyclen wird vorgestellt (siehe Schema; dba=Dibenzylidenaceton, Cy=Cyclohexyl). Die Methode ist vielseitig (ein einziges Verfahren für alle Substrate einschließlich Boronatester und Trifluorborate), auf Substrate mit ungeschützten funktionellen Gruppen (NH2 und OH) anwendbar und auch für nichtaktivierte Arylchloride geeignet.
[reaction: see text] beta-Ketoesters can be effectively monofluorinated with F-TEDA using CpTiCl(3) as a catalyst. With the use of this catalyst, the extent of the competing difluorination does not reach 10%. [TiCl(2)(TADDOLato)] complexes catalyze the one-pot enantioselective heterodihalogenation of beta-ketoesters with F-TEDA and NCS to afford alpha-chloro-alpha-fluoro-beta-ketoesters in moderate to good yields. The sequence of addition of the halogenating agents determines the sense of chiral induction.
The substrate range of the [TiCl2(TADDOLate)] (TADDOL=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanol)‐catalyzed asymmetric α‐fluorination of activated β‐carbonyl compounds has been investigated. Optimal conditions for catalysis are characterized by using 5 mol‐% of TiCl2(naphthalen‐1‐yl)‐TADDOLate) as catalyst in a saturated (0.14 mol/l) MeCN solution of F‐TEDA (1‐(chloromethyl)‐4‐fluoro‐1,4‐diazoniabicyclo[2.2.2]octane bis‐[tetrafluoroborate]) at room temperature. A series of α‐methylated β‐keto esters (3‐oxobutanoates, 3‐oxopentanoates) with bulky benzyl ester groups (60–90% ee) or phenyl ester (67–88% ee) have been fluorinated readily, whereas α‐acyl lactones were also readily fluorinated, but gave lower inductions (13–46% ee). Double stereochemical differentiation in β‐keto esters with chiral ester groups raised the stereoselectivity to a diastereomeric ratio (dr) of up to 96.5 : 3.5. For the first time, β‐keto S‐thioesters were asymmetrically fluorinated (62–91.5% ee) and chlorinated (83% ee). Lower inductions were observed in fluorinations of 1,3‐diketones (up to 40% ee) and β‐keto amides (up to 59% ee). General strategies for preparing activated β‐carbonyl compounds as important model substrates for asymmetric catalytic α‐functionalizations are presented (>60 examples).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.