Defects in castings often appear unexpectedly and it is di cult to identify their source as they can be brought about by a large number of randomly changing production parameters. Arti®cial neural networks were used for detection of the causes of gas porosity defects in steel castings. The applied procedure included systematic storing of two types of information: about the process parameters, materials used and even employees involved in the production (as the network inputs) and about the appearance of a given defect (as the network output). The trained network was able to detect interdependences among various factors in¯uencing water vapour pressure in the mould and thus to indicate the most probable cause of porosity.
Determination of the most significant manufacturing process parameters using collected past data can be very helpful in solving important industrial problems, such as the detection of root causes of deteriorating product quality, the selection of the most efficient parameters to control the process, and the prediction of breakdowns of machines, equipment, etc. A methodology of determination of relative significances of process variables and possible interactions between them, based on interrogations of generalized regression models, is proposed and tested. The performance of several types of data mining tool, such as artificial neural networks, support vector machines, regression trees, classification trees, and a naïve Bayesian classifier, is compared. Also, some simple non-parametric statistical methods, based on an analysis of variance (ANOVA) and contingency tables, are evaluated for comparison purposes. The tests were performed using simulated data sets, with assumed hidden relationships, as well as on real data collected in the foundry industry. It was found that the performance of significance and interaction factors obtained from regression models, and, in particular, neural networks, is satisfactory, while the other methods appeared to be less accurate and/or less reliable.
The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.