We demonstrate single layer graphene/ n-Si Schottky junction solar cells that under AM1.5 illumination exhibit a power conversion efficiency (PCE) of 8.6%. This performance, achieved by doping the graphene with bis(trifluoromethanesulfonyl)amide, exceeds the native (undoped) device performance by a factor of 4.5 and the best previously reported PCE in similar devices by a factor of nearly 6. Current-voltage, capacitance-voltage and external quantum efficiency measurements show the enhancement to be due to the doping induced shift in the graphene chemical potential which increases the graphene carrier density (decreasing the cell series resistance) and increases the cell's built-in potential (increasing the open circuit voltage) both of which improve the solar cell fill factor.
Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle (phi). Short-range correlations in Delta(eta), which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in eta (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 nb(-1) data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate p(T) of 1-3 GeV/c, 2.0
A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb⁻¹ collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E6 diquarks, in specific mass intervals. This extends previously published limits on these models.
A new type of crystalline silicon solar cell is described. Superficially similar to a photoelectrochemical cell a liquid electrolyte creates a depletion (inversion) layer in an n-type silicon wafer, however no regenerative redox couple is present to ferry charge between the silicon and a counter electrode. Instead holes trapped in the electrolyte-induced inversion layer diffuse along the layer until they come to widely spaced grid lines, where they are extracted. The grid lines consist of a single-walled carbon nanotube film etched to cover only a fraction of the n-Si surface. Modeling and simulation shows the inversion layer to be a natural consequence of the device electrostatics. With electronic gating, recently demonstrated to boost the efficiency in related devices, the cell achieves a power conversion efficiency of 12%, exceeding the efficiency of dye sensitized solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.