The role of L-type voltage-operated Ca2+ channels (VOCs) in myogenic responsiveness was studied in cannulated rat mesenteric small arteries [mean diameter at 100 mm Hg and full dilation was 329 ± 9 (SE) µm]. Twenty-six arteries were cannulated and pressurized. The luminal cross-sectional area of these vessels was monitored continuously. To test for myogenic responsiveness, pressure was raised stepwise from 20 to 60 and from 60 to 100 mm Hg. Pressure elevation enhanced the vascular tone, reflecting spontaneous myogenic responsiveness. Nifedipine (1 and 10 µM) suppressed spontaneous myogenic responses. The αi-adrenoceptor agonist phenylephrine (1 and 10 µM), when administered at 20 mm Hg, elicited constriction and vasomotion, and potentiated myogenic constriction to subsequent pressure elevation. Nifedipine (1 and 10 µM) also suppressed phenylephrine-potentiated myogenic responsiveness. Stimulation of VOCs with BAY K 8644 (10-300 mM) had no effect at 20 mm Hg, but augmented myogenic responsiveness. K+ (16-46 mM) caused concentration-dependent constrictions when administered at 20 mm Hg, and potentiated myogenic responsiveness when the pressure was raised from 20 to 60 mm Hg. Thus, any intervention that blocked the VOCs also blocked myogenic responses, and any form of stimulation of the VOCs also augmented myogenic responses. Therefore, we conclude that VOCs are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries.
T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker verapamil and the relatively specific T-type blockers mibefradil and nickel were made on cannulated vessels with either myogenic tone (75 mmHg) or a similar level of constriction induced by 30 mM K(+) at 35 mmHg. Mibefradil and nickel were, respectively, 162-fold and 300-fold more potent in inhibiting myogenic tone compared with K(+)-induced constriction [log(IC(50), M): mibefradil, basal -7.3 +/- 0.2 (n = 9) and K(+) -5.1 +/- 0.1 (n = 5); nickel, basal -4.1 +/- 0.2 (n = 5) and K(+) -1.6 +/- 0.5 (n = 5); means +/- SE]. Verapamil had a 17-fold more potent effect [log(IC(50), M): basal -6.6 +/- 0.1 (n = 5); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P < 0.05, basal vs. K(+)]. These data suggest that T-type calcium channels are expressed and involved in maintenance of myogenic tone in rat cremaster muscle arterioles.
, which resulted in a K i value for MB of 0.58+0.02 mmol l 71. 6 In conclusion, MB may be considered as a cholinesterase inhibitor with additional, relevant anity for muscarinic binding sites at concentrations at which MB is used for investigations into the endothelial system. In our opinion these interactions between MB and the cholinergic system invalidate the use of MB as a tool for the investigation of the L-arginine-NO-pathway, in particular when muscarinic receptor stimulation is involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.