Abstract. Nutrient enrichment of habitats (eutrophication) is considered to be one of the main causes of plant diversity decline worldwide. Several experiments have shown a rapid loss of species in the first years after fertilization started. However, little is known about changes in species richness in the long term. Here, we use a 50-year-old field experiment with a range of fertilization treatments in grasslands that were mown twice each year in the center of The Netherlands. We show that species richness in all plots initially declined but started to recover after ;25 years of continued fertilization. This was also true for the heavily fertilized treatment (NPK). In NPK-fertilized plots, the decline was strongest and associated with a strong divergence of plant trait composition from the control, reflecting a shift to a plant community adapted to nutrient-rich conditions. During the subsequent period of increase in species richness, the trait composition remained stable. These results show that plant species richness can, at least partially, recover after an initial diversity decline caused by fertilization.
Questions: What are important forest characteristics determining colonization of forest patches by forest understorey species? Location: Planted forests on land recently reclaimed from the sea, the Netherlands. Methods: We related the distribution of forest specialist species in the understorey of 55 forests in Dutch IJsselmeer polders to the following forest characteristics: age, area, connectivity, distance to mainland (as a proxy for distance to seed source) and path density. We used species of the Fraxino-Ulmetum association for the Netherlands as reference for species that could potentially occur in the study area. Results: Area and age of the surveyed forests explained a large part of the variation in overall species composition and species number of forest plant species. The importance of connectivity and distance to the mainland of forest habitats became apparent only at a more detailed level of dispersal groups and individual species. The importance of forest parameters differed between dispersal groups and also between individual species. After 60 years, 75% of the potential pool of wind-dispersed species has reached the polders, whereas this was only 50% for species lacking specific adaptations to long-distance dispersal. However, the average percentage of successful colonizing species present per forest was substantially lower, ranging from 15 to 37%. Conclusions:The data strongly suggest that the colonization process in polder forests is still in its initial phase, during which easily dispersed species dominate the vegetation. Colonization success of common species that lack adaptations to long-distance dispersal is affected by spatial configuration of the forests, and most rare species that could potentially occur in these forests are still absent. Implications for conservation of rare species in fragmented landscapes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.