On 10 September 2017, irradiance from a magnitude X8.2 solar flare impacted Mars while the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter was characterizing the Mars upper atmosphere. This solar flare was the largest to occur during the MAVEN mission to date, nearly tripling the ionizing irradiance impacting Mars in tens of minutes, and provides an opportunity to study the planet's response to extreme irradiance changes. This letter reports in situ observations of the Mars topside ionosphere's response to this flare above 155 km made 1.67 hr after the flare soft X‐ray peak. The observed plasma density increase is higher than expected based solely on increased ionization, and the electron temperature decreases below 225 km; both effects can be explained by an expanded neutral atmosphere, which efficiently dissipates any flare‐induced heating of the thermal electrons at altitudes where CO2 is the dominant species. Further, the ion density and composition change significantly at both fixed altitude and pressure level, which can be explained by a change in the O:CO2 density ratio, highlighting the importance this ratio has in determining ionospheric structure.
High‐resolution mass density observations inferred from accelerometer measurements on the CHAMP and GRACE satellites are employed to investigate the thermosphere mass density response with latitude and altitude to geomagnetic activity during the recent solar minimum. Coplanar orbital periods in February 2007 and December 2008 revealed the altitude and latitude response in thermosphere mass density for their respective winter hemispheres was influenced by the relative amount of helium and oxygen present. The CHAMP‐to‐GRACE (C/G) mass density ratio depends on two terms; the first proportional to the ratio of the mean molecular weight to temperature and the second proportional to the vertical gradient of the logarithmic mean molecular weight. For the relative levels of helium and oxygen in February 2007, the winter hemisphere C/G mass density response to geomagnetic activity, although similar to the summer hemisphere, was caused predominantly by changes in the vertical gradient of the logarithmic mean molecular weight. In December 2008, the significant presence of helium caused the mean molecular weight changes to exceed temperature changes in the winter hemisphere leading to an increase in the C/G ratio with increasing geomagnetic activity, in opposition to the decrease observed in the summer hemisphere that was caused primarily by temperature changes. The observed behavior is indicative of composition effects influencing the mass density response and the dynamic action of the oxygen to helium transition region in both latitude and altitude will lead to complex behaviors in the mass density at GRACE altitudes throughout the extended solar minimum from 2007 to 2010.
A new data set of summed neutral N2 and O number density profiles, spanning altitudes between 150 and 400 km, and observed during Northern Winter from 2010 to 2016 is presented. The neutral density profiles are derived from solar occultation measurements made by the 0.1–20 nm Zr channel on the Large Yield Radiometer (LYRA) instrument on board Project for Onboard Autonomy 2 (PROBA2). The climatology derived from the vertical profiles is consistent with that predicted by the NRLMSISE‐00 model, and the systematic error and random uncertainty of the measurements are less than 13% and 6%, respectively. The density profiles are used to characterize the response of thermospheric density to solar EUV irradiance variability. Peak correlation coefficients between neutral density and EUV irradiance occur near 300 km at the dusk terminator and 220 km at the dawn terminator. Density variability is higher at dawn than it is at dusk, and temperature variability increases with increasing altitude at both terminators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.