Seedlings of winter rape were cultured in vitro on media containing 24-epibrassinolide, EBR (100 nM) and cadmium (300 µM). After 14 d of growth, fast fluorescence kinetics of chlorophyll (Chl) a and contents of photosynthetic pigments and Cd in cotyledons were measured. Cd was strongly accumulated but its content in cotyledons was 14.7 % smaller in the presence of EBR. Neither Cd nor EBR influenced the contents of Chl a and b and carotenoids. Cd lowered the specific energy fluxes per excited cross section (CS) of cotyledon. The number of active reaction centres (RC) of photosystem 2 (RC/CS) decreased by about 21.0 % and the transport of photosynthetic electrons (ET 0 /CS) by about 17.1 %. Simultaneously, under the influence of Cd, the activity of O 2 evolving centres (OEC) diminished by about 19.5 % and energy dissipation (DI 0 /CS) increased by about 14.6 %. In the cotyledons of seedlings grown on media without Cd, EBR induced only a small increase in the activity of most photochemical reactions per CS. However, EBR strongly affected seedlings cultured with cadmium. Specific energy fluxes TR 0 /CS and ET 0 /CS of the cotyledons of plants Cd+EBR media were about 10.9 and 20.9 % higher, respectively, than values obtained for plants grown with Cd only. EBR also limited the increase of DI 0 /CS induced by Cd and simultaneously protected the complex of OEC against a decrease of activity. Hence EBR reduces the toxic effect of Cd on photochemical processes by diminishing the damage of photochemical RCs and OECs as well as maintaining efficient photosynthetic electron transport.
The efficiency of embryogenesis of anther culture was compared using four cultivars of oat (Avena sativa L.): 'Akt', 'Bingo', 'Bajka', and 'Chwat'. Despite the high resistance of oat to the process of androgenesis, all tested cultivars produced embryo-like structures and only two of them, 'Akt' and 'Chwat', produced fertile doubled haploid plants. A strong cultivar dependency was observed during induction of androgenesis. Further, cold pretreatment together with high temperature shock enhanced the efficiency of this technique. The highest number of embryo-like structures and haploid plants was obtained from cv. 'Chwat' (3.6% and 0.8%, respectively). Embryo-like structure formation also depended on the distance from the base of the flag leaf to the penultimate leaf of the panicle. Most of them were observed on anthers harvested from panicles of which the distance from the base of the flag leaf to the penultimate leaf was less than 4 cm. The presence of the induction medium supplemented with different plant growth regulators was essential for the induction of embryo-like structures but did not increase the production of haploid plants and doubled haploid lines. The highest number of embryo-like structures and plants was obtained on W14 medium with the addition of 2.0 mg/dm 3 2,4-dichlorophenoxyacetic acid and 0.5 mg/dm 3 kinetin (2.7%). The low haploid plant regeneration rate (from 0.03 to 0.05%) still limits the practical application of anther culture for the production of doubled haploid lines in oat.
The effect of chloramphenicol (CP) on the differentiation of callus cells of Hapiopappus gracilis into tracheary elements (TE) was studied. CP (1 mg! -l) added to the medium stimulating the differentiation was shown to have an inhibitory effect. This observation points to the importance of the impaired functions of mitochondria in the processes leading to the differentiation of callus cells into TE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.