Not all mineral oil metalworking¯uids (MWFs) in common use form stable airborne mists which can be sampled quantitatively onto a ®lter. This much has been known for some time but no simple method of identifying oils too volatile for customary ®lter sampling has been developed. Past work was reviewed and experiments were done to select simple criteria which would enable such oils to be identi®ed. The sampling eciency for a range of commercial mineral oil MWF were assessed by drawing clean air through spiked ®lters at 2 l. min À1 for periods up to 6 h before analysis. The physical properties of MWF are governed by their composition and kinematic viscosity was found to be the most practical and easily available index of the potential for sample loss from the ®lter. Oils with viscosities greater that 18 cSt (at 408C) lost less than 5% of their weight, whereas those with viscosities less than 18 cSt gave losses up to 71%. The losses from the MWF were mostly aliphatic hydrocarbons (C 10 ±C 18), but additives such as alkyl benzenes, esters, phenols and terpene odorants were also lost. The main recommendation to arise from the work is that ®lter sampling can be performed on mineral oils with viscosities of 18 cSt (at 408C) or more with little evaporative losses from the ®lter. However, sampling oils with viscosities less than 18 cSt will produce results which may signi®cantly underestimate the true value. Over a quarter of UK mineral oil MWFs are formulated from mineral oils with viscosities less than 18 cSt (at 408C). The problem of exposure underestimation and inappropriate exposure sampling could be widespread. Further work is being done on measurement of mixed phase mineral oil mist exposure. Crown
This paper summarizes the analytical and occupational hygiene findings from a recent survey of occupational exposure to metalworking fluids (MWFs) in the engineering industry. The aim of the survey was to link MWF mist exposure measurements with particular engineering processes and controls, and utilize the data obtained to develop exposure standards. At the same time the opportunity was taken to assess fluid management and control, including bacterial and fines contamination in the machine sumps. In general, occupational exposure to mineral oil MWF mist was controlled to <3 mg/m(3) (8 h time-weighted average) and to <1 mg/m(3) for water-mix MWF mist (in terms of the concentrate). These exposure values do not necessarily represent best practice, but are believed to be achievable and representative of industry as a whole. Gravimetric analysis of the total inhalable particulate was found to be a good predictor of mineral oil MWF mist but not for water-mix MWF mist. Grinding and drilling operations produced higher exposures than turning and milling for water-mix fluids. There were insufficient data to compare machining operations for mineral oil MWFs. On the whole, fluid management was found to be poor, with most sites failing to meet industry good practice or Health & Safety Executive (HSE) standards. Some of the operating procedures utilized were deficient or unsatisfactory. Poor standards of fluid management were found at all sizes of company. High levels of bacteria, endotoxin and fines were found in sumps, and control of other factors, such as water-mix fluid concentration, was often poor. Mineral oils had higher levels of fines than water-mix fluids (medians of 395 and 18 mg/l, respectively), and grinding produced high levels of fines in both types of MWF. Many water-mix sumps contained bacterial levels of >1 x 10(6) CFU/ml, and endotoxin levels of >100 000 EU/ml were not uncommon. The median values were 109 000 CFU/ml and 8039 EU/ml, respectively. Mists could potentially contain extensive contamination from bacteria and endotoxin. Analysis of the data suggests that sumps operating under typical conditions for machining (a temperature of 20 degrees C, a pH of 9 and a fluid strength below 10%), also appear to provide optimum conditions for the proliferation of bacteria. Low levels of benzo[a]pyrene (median 0.03 micro g/g) were found in the mineral oils, and low levels of N-nitrosodiethanolamine (median 0.4 micro g/ml) were found in the water-mix MWFs. The results of this work will contribute to guidance from the HSE, setting out accepted industry good practice, including guide values for MWF mist and sump fluid contaminants, with significant emphasis on sump fluid management (maintenance and monitoring), as well as control issues.
The analysis of HDA in urine is a useful technique for assessing exposure to isocyanates in paint sprayers. The simplicity of this approach has allowed wide-scale use of biological monitoring in an industry dominated by small and micro businesses. Biological monitoring of exposure has enabled individual companies, and sprayers, to check that their control measures are working. This study showed overall lower levels of HDA in paint sprayers following SHADs. These lower levels have been maintained across a wider population of UK paint sprayers over the succeeding years. Whilst there may be many reasons for the reduction in exposure, the weight of evidence suggests that the key messages about exposure control measures, delivered through the SHADs and other means, were influential.
BackgroundOrganic diisocyanates are a common cause of occupational asthma, particularly in motor vehicle repair (MVR) workers. The UK Health & Safety Laboratory provides screening for urinary hexamethylenediamine (UHDA), a biomarker of exposure to 1,6-hexamethylene diisocyanate (HDI). The UK Surveillance of Work-related and Occupational Respiratory Disease scheme (SWORD) has collected reports of occupational asthma since 1996.AimsTo compare trends in HDI exposure with trends in the incidence of work-related asthma attributed to isocyanates or paint spraying in MVR workers reported to SWORD.MethodsTwo-level regression models were used to estimate trends in UHDA levels and work-related asthma in MVR workers reported to SWORD. The direction and magnitude of the trends were compared descriptively.ResultsFrom 2006 to 2014, there was a significant decline in the number of urine samples with detectable levels of UHDA (odds ratio = 0.96; 95% confidence intervals 0.94–0.98) and minimal change in those over the guidance value (1.03; 1.00–1.06). Over the same period, there was a significant decline in all asthma cases attributed to isocyanates or paint spraying reported to SWORD (0.90; 0.86–0.94) and a non-significant decline among MVR workers (0.94; 0.86–1.02).ConclusionsThe simultaneous decrease in HDI exposure and incident cases of asthma reported to SWORD is temporally consistent with a reduction in exposure to airborne isocyanate leading to a reduction in asthma. Although this is not direct evidence of a causal relationship between the two trends, it is suggestive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.