Abstract. The use of remote-sensing based methods for soil erosion assessment has been increasing in recent years thanks to the availability of free access satellite data, and it has repeatedly proven to be successful. Its application to the Arctic presents a number of challenges, due to its peculiar soils with short growing periods, winter storms, wind, and frequent cloud and snow cover. However, the benefits of applying these techniques would be especially valuable in arctic areas, where ground local information can be hard to obtain due to hardly accessible roads and lands. Here we propose a solution which uses a Support Vector machine classification model and ground truth samples to calibrate the processed remote images over a specific area, in order to then automate the analysis for larger, less accessible areas. This solution is being developed for soil erosion studies of Iceland specifically, using Sentinel 2 satellite data combined with local assessment data from Iceland’s Soil Conservation Services department.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.