The current development of electric power industry in Poland, especially in the field of renewable energy sources, including wind power, brings about the need to introduce legislation on new work environment. The development of occupational safety and health (OSH) regulations that must be met by new workplaces, such as offshore substations becomes necessary in view of the construction of modern offshore wind power plants - offshore wind farms. Staying on offshore substation is associated with an increased exposure to harmful health factors: physical, chemical, biological and psychophysical. The main sources of health risks on offshore substations are: temperature, electromagnetic field, noise from operating wind turbines, direct and alternating current, chemicals, Legionella bacteria and social isolation of people. The aim of this article is to draw attention to the problem of offshore substation workers' exposure to harmful factors and to present methods of preventing and reducing the risk-related adverse health effects. In this paper, there are identified and described risks occurring on offshore substations (fire, explosion, lightning, accidents at work). Some examples of the means and the methods for reducing the negative impact of exposure on the human health are presented and discussed. The article also highlights the need to develop appropriate laws and health and safety regulations concerning the new working environment at the offshore substations. The review of researches and international standards shows that some of them can be introduced into the Polish labor market.
Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single-and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.
This paper presents a study on ferroresonance occurring in a high voltage 400 kV transmission grid due to energization of power transformer under no-load conditions. The system scenarios analyzed in the present paper are considered as critical for development and modernization plans as currently announced by the national grid operator in Poland. The PSCAD simulation model was developed and applied for several study cases of a system with double-circuit arrangement of a transmission line. It is shown that the ferroresonant oscillations can be initiated by two-phase switching operation of a line circuit breaker. The impact of the double-circuit length on the ferroresonance mode and severity is demonstrated with the use of the Poincaré map analysis and Short Time Fourier Transform. It is demonstrated that the length of the transmission line that is mutually coupled in the double-circuit arrangement has a significant impact on the ferroresonance occurrence and on its mode. As the ferroresonance can pose severe threat to the power system components due to the severe overvoltage and overcurrent oscillations, the analysis presented in this paper demonstrates the necessity of the ferroresonance analyses for any re-designed transmission system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.