Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) shows particular promise as an antitumour agent against colorectal cancer. It is known that KP1019 reacts with human serum proteins, whereby the major amount binds to albumin (present in large excess) and a smaller amount to transferrin. It has been hypothesised that transferrin-mediated uptake by transferrin receptor expressing tumour cells may in part explain the apparent tumour selectivity of this compound. Circular dichroism spectroscopy and electrospray ionisation mass spectrometry studies demonstrate that two equivalents of KP1019 bind specifically to human apotransferrin, while additional amounts of the ruthenium complex bind unspecifically. Uptake studies in the transferrin receptor-expressing human colon carcinoma cell line SW480 revealed a higher cellular accumulation of KP1019 in comparison to a KP1019-transferrin adduct (2:1), while the uptake of a KP1019-Fe(III)-transferrin conjugate (1:0.3:1) significantly exceeded that of KP1019, suggesting that iron binding is necessary to obtain a protein conformation which favours recognition by the transferrin receptors on the cell surface. Our study showed that KP1019 is transported into the cell by both transferrin-independent and transferrin-dependent mechanisms. Transferrin-mediated uptake is more efficient when transferrin is saturated with iron to a physiological degree (y30%). Cell fractionation experiments demonstrated that after a 2 h treatment of human colon cancer cells with 10 mM KP1019 on average 55% of the intracellular ruthenium is located in the cellular nucleus, while 45% remain in the cytosol and other cellular components.
Our data demonstrate that trans-[tetrachlorobisindazole-ruthenate(III)] complex salts are promising candidate drugs in the second-line treatment of colorectal cancers resistant to other cytostatic drugs and has been introduced into phase I clinical trials.
Antineoplastic ruthenium(III) complexes are generally regarded as prodrugs, being activated by reduction. Within a homologous series of ruthenium(III) complexes, cytotoxic potency is therefore expected to increase with increasing ease of reduction. Complexes of the general formula [Ru(III)Cl((6-n))(ind)n](3-n)- (n = 0-4; ind = indazole; counterions = Hind(+) or Cl(-)) and the compound trans-[Ru(II)Cl(2)(ind)(4)] have been prepared and characterized electrochemically. Lever's parametrization method predicts that a higher indazole-to-chloride ratio results in a higher reduction potential, which is confirmed by cyclic voltammetry. In vitro antitumor potencies of these complexes in colon cancer cells (SW480) and ovarian cancer cells (CH1) vary by more than 2 orders of magnitude and increase in the following rank order: [Ru(III)Cl(6)](3-) < [Ru(III)Cl(4)(ind)(2)](-) < [Ru(III)Cl(5)(ind)](2-) << [Ru(III)Cl(3)(ind)(3)] < [Ru(III)Cl(2)(ind)(4)](+) approximately [Ru(II)Cl(2)(ind)(4)]. Thus, the observed differences in potency correlate with reduction potentials largely, though not perfectly, pointing to the influence of additional factors. Differences in the cellular uptake (probably resulting from different lipophilicity) contribute to this correlation but cannot solely account for it.
KP1019 [indazolium trans-[tetrachlorobis(1H-indazole)ruthenate (III)] (FFC14A) is a metal complex with promising anticancer activity. Since chemoresistance is a major obstacle in chemotherapy, this study investigated the influence of several drug resistance mechanisms on the anticancer activity of KP1019. Here we demonstrate that the cytotoxic effects of KP1019 are neither substantially hampered by overexpression of the drug resistance proteins multidrug resistance-related protein 1, breast cancer resistance protein, and lung resistance protein nor the transferrin receptor and only marginally by the cellular p53 status. In contrast, P-glycoprotein overexpression weakly but significantly (up to 2-fold) reduced KP1019 activity. P-glycoprotein-related resistance was based on reduced intracellular KP1019 accumulation and reversible by known P-glycoprotein modulators. KP1019 dose dependently inhibited ATPase activity of P-glycoprotein with a K(i) of approximately 31 microM. Furthermore, it potently blocked P-glycoprotein-mediated rhodamine 123 efflux under serum-free conditions (EC(50), approximately 8 microM), however, with reduced activity at increased serum concentrations (EC(50) at 10% serum, approximately 35 microM). Moreover, P-glycoprotein-mediated daunomycin resistance could only be marginally restored by KP1019 in serum-containing medium, also indicating an influence of serum proteins on the interaction between KP1019 and P-glycoprotein. Acquired KP1019 resistance was investigated by selecting KB-3-1 cells against KP1019 for more than 1 year. Only an approximately 2-fold KP1019 resistance could be induced, which unexpectedly was not due to overexpression of P-glycoprotein or other efflux pumps. Accordingly, KP1019-resistant cells did not display reduced drug accumulation. Their unique cross-resistance pattern confirmed an ABC transporter-independent resistance phenotype. In summary, the likeliness of acquiring insensitivity to KP1019 during therapy is expected to be low, and resistance should not be based on overexpression of drug efflux transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.