Development of bio-mediated synthesis of CdS nanoparticles is one of the important fields in nanoparticles. The present investigation demonstrates the eco-friendly synthesis of cadmium sulfide nanoparticles using Enterococcus sp. (RMAA). The formation of an intense peak at 410 nm in the UV-Vis spectrum reveals the synthesis of CdS nanoparticles. The crystalline natures of the synthesized CdS nanoparticles were identified by X-ray diffraction assay. The scanning electron microscope analysis shows the formation of spherical-shaped CdS nanoparticles with a size range of about 50-180 nm. Fourier transform infrared spectrum shows that the synthesized CdS nanoparticles are capped with bimolecular compounds which are responsible for the reduction of cadmium sulfate to sulfide nanoparticles. The resulting CdS nanoparticles were tested for antibacterial activity using agar well diffusion method against the test cultures of Serratia nematodiphila, Escherichia coli, Klebsiella planticola, Vibrio sp. and Planomicrobium sp. having good zone of inhibition. The fungicidal activity of CdS nanoparticles against pathogenic fungus Aspergillus niger and Aspergillus flavus produced a good zone of inhibition. The novel green chemistry approach is an eco-friendly and reliable process and suitable for large-scale production.
Recently, nontoxic origin-mediated synthesis of copper oxide nanoparticles acquires further recognition because of the key role of bioapplications. The plant Cissus quadrangularis is one most prominent herbs used in the treatment of diabetes, asthma, tissue regeneration, etc. In this study, we tested the process of copper oxide nanoparticle synthesis and their role in many functions from Cissus quadrangularis. The synthesis of copper oxide nanoparticles uses plant extract and characterization by X-ray diffraction, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscope (AFM), and scanning electron microscope (SEM). The synthesized nanoparticles were analyzed for their biomedical applications such as antibacterial, antifungal, antioxidant, antidiabetic, and anti-inflammatory activity and antiproteinase action. The results show that the C. quadrangularis plant-mediated nanoparticles may be used in many biomedical applications related to arthritis, diabetes, and the production of various antimicrobial products in the future.
The present study deals with extracellular synthesis and characterization of copper sulfide (CuS) nanoparticles using Aeromonas hydrophila, and the biological applications of the synthesized CuS like antibacterial, anti-inflammatory, and antioxidant activity were reported. Further, the toxicological effects of the CuS were evaluated using zebrafish as an animal model. The primary step of the synthesis was carried out by adding the precursor copper sulfates to the culture supernatant of Aeromonas hydrophila. The UV-visible spectrophotometer was used to characterize the synthesized nanoparticles, and the peak was obtained at 307 nm through the reduction process. Fourier transform infrared spectroscopy (FTIR) was involved to find out the functional groups (carboxylic acid, alcohols, alkanes, and nitro compounds) associated with copper sulfide nanoparticles (CuS-NPs). Atomic force microscopy (AFM) was used to characterize the CuS topographically, and a scanning electron microscope (SEM) revealed about 200 nm sized CuS nanoparticles with agglomerated structures. Overall, the characterized nanoparticles can be considered as a potential candidate with therapeutic proficiencies as antibacterial, antioxidant, and anti-inflammatory mediator/agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.